Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4932 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_1^2$ + $ \phi_1q_2^2$ + $ M_3M_7$ + $ M_4M_8$ 0.6244 0.8114 0.7696 [X:[], M:[1.0, 1.0093, 0.9813, 1.2523, 0.729, 0.7477, 1.0187, 0.7477], q:[0.2477, 0.7523], qb:[0.5, 0.5187], phi:[0.4953]] [X:[], M:[[0], [4], [-8], [1], [-9], [-1], [8], [-1]], q:[[-1], [1]], qb:[[0], [8]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ M_6$, $ M_8$, $ q_1\tilde{q}_2$, $ \phi_1q_1^2$, $ M_1$, $ M_2$, $ M_7$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_5^2$, $ M_5M_6$, $ M_5M_8$, $ M_6^2$, $ M_6M_8$, $ M_8^2$, $ \phi_1q_1q_2$, $ \phi_1\tilde{q}_1^2$, $ M_5q_1\tilde{q}_2$, $ M_6q_1\tilde{q}_2$, $ M_8q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_1^2\tilde{q}_2^2$, $ M_5\phi_1q_1^2$, $ M_2M_5$, $ M_6\phi_1q_1^2$, $ M_8\phi_1q_1^2$, $ M_1M_6$, $ M_5M_7$, $ M_1M_8$, $ \phi_1q_2\tilde{q}_1$, $ M_2M_6$, $ M_2M_8$, $ \phi_1q_1^3\tilde{q}_2$, $ M_6M_7$, $ M_7M_8$, $ \phi_1q_2\tilde{q}_2$, $ M_2q_1\tilde{q}_2$, $ M_7q_1\tilde{q}_2$, $ M_5\phi_1q_1\tilde{q}_1$, $ M_6\phi_1q_1\tilde{q}_1$, $ M_8\phi_1q_1\tilde{q}_1$, $ M_5\phi_1q_1\tilde{q}_2$ . -2 t^2.19 + 2*t^2.24 + t^2.3 + t^2.97 + t^3. + t^3.03 + t^3.06 + t^3.73 + t^3.79 + t^4.37 + 2*t^4.43 + 5*t^4.49 + 3*t^4.54 + 2*t^4.6 + t^5.16 + 3*t^5.21 + 2*t^5.24 + 3*t^5.27 + 3*t^5.3 + t^5.33 + t^5.36 + t^5.92 + 3*t^5.97 - 2*t^6. + 4*t^6.03 + 2*t^6.08 + t^6.11 + t^6.56 + 2*t^6.62 + 4*t^6.67 + 7*t^6.73 - t^6.76 + 7*t^6.79 - t^6.81 + 5*t^6.84 + 2*t^6.9 + t^7.35 + 3*t^7.4 - t^7.43 + 7*t^7.46 + t^7.49 + 5*t^7.51 + 4*t^7.54 + 4*t^7.57 + 4*t^7.6 + t^7.63 + 2*t^7.65 + t^8.1 + 2*t^8.16 - 3*t^8.19 + 6*t^8.21 - 7*t^8.24 + 8*t^8.27 - 4*t^8.3 + 6*t^8.33 + t^8.36 + 3*t^8.38 + t^8.41 + t^8.75 + 2*t^8.8 + 4*t^8.86 + t^8.89 + 5*t^8.92 + 7*t^8.97 - t^4.49/y - t^6.67/y - t^6.73/y + (2*t^7.43)/y + (2*t^7.49)/y + (2*t^7.54)/y + t^8.16/y + t^8.19/y + (3*t^8.21)/y + (4*t^8.24)/y + (3*t^8.27)/y + (4*t^8.3)/y + t^8.33/y + t^8.36/y - t^8.86/y + (3*t^8.97)/y - t^4.49*y - t^6.67*y - t^6.73*y + 2*t^7.43*y + 2*t^7.49*y + 2*t^7.54*y + t^8.16*y + t^8.19*y + 3*t^8.21*y + 4*t^8.24*y + 3*t^8.27*y + 4*t^8.3*y + t^8.33*y + t^8.36*y - t^8.86*y + 3*t^8.97*y t^2.19/g1^9 + (2*t^2.24)/g1 + g1^7*t^2.3 + t^2.97/g1^4 + t^3. + g1^4*t^3.03 + g1^8*t^3.06 + t^3.73/g1^3 + g1^5*t^3.79 + t^4.37/g1^18 + (2*t^4.43)/g1^10 + (5*t^4.49)/g1^2 + 3*g1^6*t^4.54 + 2*g1^14*t^4.6 + t^5.16/g1^13 + (3*t^5.21)/g1^5 + (2*t^5.24)/g1 + 3*g1^3*t^5.27 + 3*g1^7*t^5.3 + g1^11*t^5.33 + g1^15*t^5.36 + t^5.92/g1^12 + (3*t^5.97)/g1^4 - 2*t^6. + 4*g1^4*t^6.03 + 2*g1^12*t^6.08 + g1^16*t^6.11 + t^6.56/g1^27 + (2*t^6.62)/g1^19 + (4*t^6.67)/g1^11 + (7*t^6.73)/g1^3 - g1*t^6.76 + 7*g1^5*t^6.79 - g1^9*t^6.81 + 5*g1^13*t^6.84 + 2*g1^21*t^6.9 + t^7.35/g1^22 + (3*t^7.4)/g1^14 - t^7.43/g1^10 + (7*t^7.46)/g1^6 + t^7.49/g1^2 + 5*g1^2*t^7.51 + 4*g1^6*t^7.54 + 4*g1^10*t^7.57 + 4*g1^14*t^7.6 + g1^18*t^7.63 + 2*g1^22*t^7.65 + t^8.1/g1^21 + (2*t^8.16)/g1^13 - (3*t^8.19)/g1^9 + (6*t^8.21)/g1^5 - (7*t^8.24)/g1 + 8*g1^3*t^8.27 - 4*g1^7*t^8.3 + 6*g1^11*t^8.33 + g1^15*t^8.36 + 3*g1^19*t^8.38 + g1^23*t^8.41 + t^8.75/g1^36 + (2*t^8.8)/g1^28 + (4*t^8.86)/g1^20 + t^8.89/g1^16 + (5*t^8.92)/g1^12 + (7*t^8.97)/g1^4 - t^4.49/(g1^2*y) - t^6.67/(g1^11*y) - t^6.73/(g1^3*y) + (2*t^7.43)/(g1^10*y) + (2*t^7.49)/(g1^2*y) + (2*g1^6*t^7.54)/y + t^8.16/(g1^13*y) + t^8.19/(g1^9*y) + (3*t^8.21)/(g1^5*y) + (4*t^8.24)/(g1*y) + (3*g1^3*t^8.27)/y + (4*g1^7*t^8.3)/y + (g1^11*t^8.33)/y + (g1^15*t^8.36)/y - t^8.86/(g1^20*y) + (3*t^8.97)/(g1^4*y) - (t^4.49*y)/g1^2 - (t^6.67*y)/g1^11 - (t^6.73*y)/g1^3 + (2*t^7.43*y)/g1^10 + (2*t^7.49*y)/g1^2 + 2*g1^6*t^7.54*y + (t^8.16*y)/g1^13 + (t^8.19*y)/g1^9 + (3*t^8.21*y)/g1^5 + (4*t^8.24*y)/g1 + 3*g1^3*t^8.27*y + 4*g1^7*t^8.3*y + g1^11*t^8.33*y + g1^15*t^8.36*y - (t^8.86*y)/g1^20 + (3*t^8.97*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3064 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_1^2$ + $ \phi_1q_2^2$ + $ M_3M_7$ 0.6053 0.7765 0.7795 [X:[], M:[1.0, 1.0083, 0.9834, 1.2521, 0.7313, 0.7479, 1.0166], q:[0.2479, 0.7521], qb:[0.5, 0.5166], phi:[0.4958]] t^2.19 + t^2.24 + t^2.29 + t^2.98 + t^3. + t^3.02 + t^3.05 + t^3.73 + t^3.76 + t^3.78 + t^4.39 + t^4.44 + 3*t^4.49 + 2*t^4.54 + 2*t^4.59 + t^5.17 + 2*t^5.22 + t^5.24 + 2*t^5.27 + 2*t^5.29 + t^5.32 + t^5.34 + t^5.93 + t^5.95 + 2*t^5.98 - t^6. - t^4.49/y - t^4.49*y detail