Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4914 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_3M_6$ + $ M_7q_1\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ + $ M_4M_8$ 0.6242 0.8107 0.7699 [X:[], M:[1.0, 1.0078, 0.9844, 0.7441, 0.752, 1.0156, 0.7363, 1.2559], q:[0.752, 0.248], qb:[0.5117, 0.5039], phi:[0.4961]] [X:[], M:[[0], [4], [-8], [-3], [1], [8], [-7], [3]], q:[[1], [-1]], qb:[[6], [2]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_7$, $ M_5$, $ q_2\tilde{q}_2$, $ q_2\tilde{q}_1$, $ \phi_1q_2^2$, $ M_1$, $ M_2$, $ M_6$, $ M_8$, $ q_1\tilde{q}_2$, $ M_7^2$, $ M_5M_7$, $ M_7q_2\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_7q_2\tilde{q}_1$, $ M_5^2$, $ M_5q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_5q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ M_7\phi_1q_2^2$, $ M_2M_7$, $ M_5\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_2$, $ M_1M_5$, $ M_6M_7$, $ \phi_1q_2^3\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_2M_5$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_2$, $ M_5M_6$, $ M_2q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_1$, $ \phi_1^2q_2^4$, $ M_7M_8$, $ M_7q_1\tilde{q}_2$ . -2 t^2.21 + 2*t^2.26 + t^2.28 + t^2.98 + t^3. + t^3.02 + t^3.05 + 2*t^3.77 + t^4.42 + 2*t^4.46 + t^4.49 + 4*t^4.51 + 3*t^4.54 + 2*t^4.56 + t^5.19 + 2*t^5.23 + 4*t^5.26 + 3*t^5.28 + 3*t^5.3 + t^5.33 + t^5.95 + t^5.98 - 2*t^6. + 4*t^6.02 + 3*t^6.05 + t^6.07 + t^6.09 + t^6.63 + 2*t^6.67 + 2*t^6.72 + 2*t^6.74 + 6*t^6.77 + 5*t^6.79 + 6*t^6.81 + 2*t^6.84 + t^7.39 + 2*t^7.44 + t^7.46 + t^7.49 + 4*t^7.51 + 9*t^7.54 + 7*t^7.56 + 4*t^7.58 + 2*t^7.61 + t^8.16 - 2*t^8.21 + t^8.23 - 5*t^8.26 + 3*t^8.28 + 6*t^8.3 + 6*t^8.33 + 3*t^8.35 + t^8.37 + t^8.84 + 2*t^8.88 + 4*t^8.93 + t^8.95 - t^8.98 - t^4.49/y - t^6.7/y - t^6.74/y + (2*t^7.46)/y + t^7.49/y + t^7.51/y + (2*t^7.54)/y + t^8.19/y + t^8.21/y + (4*t^8.23)/y + (4*t^8.26)/y + (4*t^8.28)/y + (3*t^8.3)/y + t^8.33/y - t^8.91/y - t^8.95/y + (3*t^8.98)/y - t^4.49*y - t^6.7*y - t^6.74*y + 2*t^7.46*y + t^7.49*y + t^7.51*y + 2*t^7.54*y + t^8.19*y + t^8.21*y + 4*t^8.23*y + 4*t^8.26*y + 4*t^8.28*y + 3*t^8.3*y + t^8.33*y - t^8.91*y - t^8.95*y + 3*t^8.98*y t^2.21/g1^7 + 2*g1*t^2.26 + g1^5*t^2.28 + t^2.98/g1^4 + t^3. + g1^4*t^3.02 + g1^8*t^3.05 + 2*g1^3*t^3.77 + t^4.42/g1^14 + (2*t^4.46)/g1^6 + t^4.49/g1^2 + 4*g1^2*t^4.51 + 3*g1^6*t^4.54 + 2*g1^10*t^4.56 + t^5.19/g1^11 + (2*t^5.23)/g1^3 + 4*g1*t^5.26 + 3*g1^5*t^5.28 + 3*g1^9*t^5.3 + g1^13*t^5.33 + t^5.95/g1^8 + t^5.98/g1^4 - 2*t^6. + 4*g1^4*t^6.02 + 3*g1^8*t^6.05 + g1^12*t^6.07 + g1^16*t^6.09 + t^6.63/g1^21 + (2*t^6.67)/g1^13 + (2*t^6.72)/g1^5 + (2*t^6.74)/g1 + 6*g1^3*t^6.77 + 5*g1^7*t^6.79 + 6*g1^11*t^6.81 + 2*g1^15*t^6.84 + t^7.39/g1^18 + (2*t^7.44)/g1^10 + t^7.46/g1^6 + t^7.49/g1^2 + 4*g1^2*t^7.51 + 9*g1^6*t^7.54 + 7*g1^10*t^7.56 + 4*g1^14*t^7.58 + 2*g1^18*t^7.61 + t^8.16/g1^15 - (2*t^8.21)/g1^7 + t^8.23/g1^3 - 5*g1*t^8.26 + 3*g1^5*t^8.28 + 6*g1^9*t^8.3 + 6*g1^13*t^8.33 + 3*g1^17*t^8.35 + g1^21*t^8.37 + t^8.84/g1^28 + (2*t^8.88)/g1^20 + (4*t^8.93)/g1^12 + t^8.95/g1^8 - t^8.98/g1^4 - t^4.49/(g1^2*y) - t^6.7/(g1^9*y) - t^6.74/(g1*y) + (2*t^7.46)/(g1^6*y) + t^7.49/(g1^2*y) + (g1^2*t^7.51)/y + (2*g1^6*t^7.54)/y + t^8.19/(g1^11*y) + t^8.21/(g1^7*y) + (4*t^8.23)/(g1^3*y) + (4*g1*t^8.26)/y + (4*g1^5*t^8.28)/y + (3*g1^9*t^8.3)/y + (g1^13*t^8.33)/y - t^8.91/(g1^16*y) - t^8.95/(g1^8*y) + (3*t^8.98)/(g1^4*y) - (t^4.49*y)/g1^2 - (t^6.7*y)/g1^9 - (t^6.74*y)/g1 + (2*t^7.46*y)/g1^6 + (t^7.49*y)/g1^2 + g1^2*t^7.51*y + 2*g1^6*t^7.54*y + (t^8.19*y)/g1^11 + (t^8.21*y)/g1^7 + (4*t^8.23*y)/g1^3 + 4*g1*t^8.26*y + 4*g1^5*t^8.28*y + 3*g1^9*t^8.3*y + g1^13*t^8.33*y - (t^8.91*y)/g1^16 - (t^8.95*y)/g1^8 + (3*t^8.98*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
3054 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ \phi_1q_1^2$ + $ M_1^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_3M_6$ + $ M_7q_1\tilde{q}_1$ + $ M_4q_1\tilde{q}_2$ 0.6436 0.8457 0.761 [X:[], M:[1.0, 1.0122, 0.9756, 0.7408, 0.7531, 1.0244, 0.7286], q:[0.7531, 0.2469], qb:[0.5183, 0.5061], phi:[0.4939]] t^2.19 + t^2.22 + 2*t^2.26 + t^2.3 + t^2.96 + t^3. + t^3.04 + t^3.07 + t^3.78 + t^4.37 + t^4.41 + 3*t^4.45 + 3*t^4.48 + 5*t^4.52 + 3*t^4.55 + 2*t^4.59 + t^5.15 + t^5.19 + 3*t^5.22 + 5*t^5.26 + 4*t^5.3 + 3*t^5.33 + t^5.37 + t^5.93 - t^6. - t^4.48/y - t^4.48*y detail