Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
48235 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ 0.5922 0.7465 0.7934 [M:[1.065, 0.935, 0.6751, 1.065, 0.8051], q:[0.6038, 0.3312], qb:[0.4612, 0.9937], phi:[0.4025]] [M:[[4], [-4], [-20], [4], [-12]], q:[[-9], [5]], qb:[[13], [15]], phi:[[-6]]]
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{4}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{2}$ ${}M_{3}\phi_{1}\tilde{q}_{1}^{2}$ -2 t^2.025 + t^2.377 + 2*t^2.415 + 3*t^3.195 + t^3.975 + t^4.051 + t^4.364 + t^4.403 + 2*t^4.441 + t^4.754 + 3*t^4.792 + 3*t^4.83 + 2*t^5.22 + 3*t^5.572 + 4*t^5.61 - 2*t^6. + t^6.076 + t^6.352 + 6*t^6.39 + 2*t^6.466 + t^6.742 + t^6.818 + 3*t^6.856 + t^7.131 + 3*t^7.17 + 3*t^7.208 + 6*t^7.246 + t^7.559 - t^7.597 + 2*t^7.636 + 3*t^7.949 + 4*t^7.987 + 3*t^8.025 + t^8.102 + t^8.339 - 4*t^8.377 - 2*t^8.415 + 2*t^8.491 + 2*t^8.729 + 5*t^8.767 + 4*t^8.805 + 3*t^8.881 - t^4.208/y - t^6.233/y - (2*t^6.623)/y + t^7.013/y + (2*t^7.441)/y + (4*t^7.792)/y + t^7.83/y + t^8.182/y + (3*t^8.22)/y - t^8.258/y + (3*t^8.572)/y + (6*t^8.61)/y - (2*t^8.648)/y - t^4.208*y - t^6.233*y - 2*t^6.623*y + t^7.013*y + 2*t^7.441*y + 4*t^7.792*y + t^7.83*y + t^8.182*y + 3*t^8.22*y - t^8.258*y + 3*t^8.572*y + 6*t^8.61*y - 2*t^8.648*y t^2.025/g1^20 + g1^18*t^2.377 + (2*t^2.415)/g1^12 + 3*g1^4*t^3.195 + g1^20*t^3.975 + t^4.051/g1^40 + g1^28*t^4.364 + t^4.403/g1^2 + (2*t^4.441)/g1^32 + g1^36*t^4.754 + 3*g1^6*t^4.792 + (3*t^4.83)/g1^24 + (2*t^5.22)/g1^16 + 3*g1^22*t^5.572 + (4*t^5.61)/g1^8 - 2*t^6. + t^6.076/g1^60 + g1^38*t^6.352 + 6*g1^8*t^6.39 + (2*t^6.466)/g1^52 + g1^46*t^6.742 + t^6.818/g1^14 + (3*t^6.856)/g1^44 + g1^54*t^7.131 + 3*g1^24*t^7.17 + (3*t^7.208)/g1^6 + (6*t^7.246)/g1^36 + g1^32*t^7.559 - g1^2*t^7.597 + (2*t^7.636)/g1^28 + 3*g1^40*t^7.949 + 4*g1^10*t^7.987 + (3*t^8.025)/g1^20 + t^8.102/g1^80 + g1^48*t^8.339 - 4*g1^18*t^8.377 - (2*t^8.415)/g1^12 + (2*t^8.491)/g1^72 + 2*g1^56*t^8.729 + 5*g1^26*t^8.767 + (4*t^8.805)/g1^4 + (3*t^8.881)/g1^64 - t^4.208/(g1^6*y) - t^6.233/(g1^26*y) - (2*t^6.623)/(g1^18*y) + t^7.013/(g1^10*y) + (2*t^7.441)/(g1^32*y) + (4*g1^6*t^7.792)/y + t^7.83/(g1^24*y) + (g1^14*t^8.182)/y + (3*t^8.22)/(g1^16*y) - t^8.258/(g1^46*y) + (3*g1^22*t^8.572)/y + (6*t^8.61)/(g1^8*y) - (2*t^8.648)/(g1^38*y) - (t^4.208*y)/g1^6 - (t^6.233*y)/g1^26 - (2*t^6.623*y)/g1^18 + (t^7.013*y)/g1^10 + (2*t^7.441*y)/g1^32 + 4*g1^6*t^7.792*y + (t^7.83*y)/g1^24 + g1^14*t^8.182*y + (3*t^8.22*y)/g1^16 - (t^8.258*y)/g1^46 + 3*g1^22*t^8.572*y + (6*t^8.61*y)/g1^8 - (2*t^8.648*y)/g1^38


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
50981 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}\phi_{1}\tilde{q}_{1}^{2}$ 0.6131 0.7877 0.7783 [M:[1.0653, 0.9347, 0.6734, 1.0653, 0.804, 0.6734], q:[0.603, 0.3317], qb:[0.4623, 0.995], phi:[0.402]] 2*t^2.02 + t^2.382 + 2*t^2.412 + 3*t^3.196 + 3*t^4.04 + t^4.372 + 2*t^4.402 + 4*t^4.432 + t^4.764 + 3*t^4.794 + 3*t^4.824 + 5*t^5.216 + 3*t^5.578 + 4*t^5.608 - 3*t^6. - t^4.206/y - t^4.206*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46727 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{4}$ 0.5764 0.7192 0.8014 [M:[1.0613, 0.9387, 0.6935, 1.0613], q:[0.6121, 0.3266], qb:[0.4492, 0.9798], phi:[0.4081]] t^2.081 + t^2.327 + t^2.448 + 3*t^3.184 + t^3.552 + t^3.919 + t^4.161 + t^4.287 + t^4.408 + t^4.529 + t^4.655 + 2*t^4.776 + t^4.897 + 2*t^5.264 + 3*t^5.511 + 2*t^5.632 + t^5.879 - t^6. - t^4.224/y - t^4.224*y detail