Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
48166 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5^2$ + $ M_3M_4$ + $ M_6\phi_1\tilde{q}_2^2$ | 0.74 | 0.9227 | 0.802 | [X:[], M:[0.8456, 0.8456, 1.0, 1.0, 1.0, 0.693], q:[0.5772, 0.5772], qb:[0.5772, 0.4228], phi:[0.4614]] | [X:[], M:[[1, 6], [-1, 2], [-1, -2], [1, 2], [0, 0], [0, -5]], q:[[0, -2], [-1, -4]], qb:[[1, 0], [0, 2]], phi:[[0, 1]]] |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_6$, $ M_2$, $ M_1$, $ \phi_1^2$, $ M_3$, $ M_4$, $ M_5$, $ M_3$, $ M_4$, $ q_2\tilde{q}_1$, $ M_6^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2M_6$, $ M_1M_6$, $ \phi_1q_2^2$, $ \phi_1q_1q_2$, $ M_6\phi_1^2$, $ \phi_1q_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_2^2$, $ M_1M_2$, $ M_1^2$, $ M_3M_6$, $ M_5M_6$, $ M_4M_6$, $ M_2\phi_1^2$, $ M_1\phi_1^2$, $ M_2M_3$, $ M_6q_2\tilde{q}_1$, $ M_1M_3$, $ M_2M_4$, $ \phi_1^4$, $ M_1M_4$, $ M_3\phi_1^2$, $ M_5\phi_1^2$, $ M_4\phi_1^2$ | $M_3^2$, $ M_4^2$, $ M_3M_5$, $ M_4M_5$, $ M_2q_2\tilde{q}_1$ | t^2.08 + 2*t^2.54 + t^2.77 + 3*t^3. + t^3.46 + t^4.16 + 3*t^4.38 + 2*t^4.62 + 7*t^4.85 + 3*t^5.07 + 3*t^5.08 + 2*t^5.31 + 5*t^5.54 + 3*t^5.77 - 2*t^6. + t^6.23 + t^6.24 + 2*t^6.46 + 2*t^6.69 + 3*t^6.92 + 8*t^6.93 + 5*t^7.15 + 3*t^7.16 + 11*t^7.38 + 4*t^7.61 + 8*t^7.62 + 3*t^7.84 + 12*t^7.85 + 5*t^8.07 - 8*t^8.08 + 8*t^8.31 + t^8.32 - 3*t^8.54 - t^4.38/y - t^6.46/y - (2*t^6.92)/y - t^7.15/y + (3*t^7.62)/y + (3*t^7.85)/y + t^8.07/y + (3*t^8.08)/y + (3*t^8.31)/y + (6*t^8.54)/y + (3*t^8.77)/y - t^4.38*y - t^6.46*y - 2*t^6.92*y - t^7.15*y + 3*t^7.62*y + 3*t^7.85*y + t^8.07*y + 3*t^8.08*y + 3*t^8.31*y + 6*t^8.54*y + 3*t^8.77*y | t^2.08/g2^5 + (g2^2*t^2.54)/g1 + g1*g2^6*t^2.54 + g2^2*t^2.77 + t^3. + t^3./(g1*g2^2) + g1*g2^2*t^3. + t^3.46/g2^4 + t^4.16/g2^10 + t^4.38/(g1*g2) + g2*t^4.38 + g1*g2^3*t^4.38 + t^4.62/(g1*g2^3) + g1*g2*t^4.62 + t^4.85/(g1^2*g2^7) + t^4.85/(g1*g2^5) + (3*t^4.85)/g2^3 + (g1*t^4.85)/g2 + g1^2*g2*t^4.85 + (g2^4*t^5.07)/g1^2 + g2^8*t^5.07 + g1^2*g2^12*t^5.07 + t^5.08/(g1*g2^7) + t^5.08/g2^5 + (g1*t^5.08)/g2^3 + (g2^4*t^5.31)/g1 + g1*g2^8*t^5.31 + t^5.54/g1^2 + t^5.54/g2^9 + 2*g2^4*t^5.54 + g1^2*g2^8*t^5.54 + t^5.77/g1 + g2^2*t^5.77 + g1*g2^4*t^5.77 - 2*t^6. + t^6.23/g2^2 + t^6.24/g2^15 + t^6.46/(g1*g2^6) + (g1*t^6.46)/g2^2 + t^6.69/(g1*g2^8) + (g1*t^6.69)/g2^4 + (g2*t^6.92)/g1^2 + g2^5*t^6.92 + g1^2*g2^9*t^6.92 + t^6.93/(g1^2*g2^12) + t^6.93/(g1*g2^10) + (4*t^6.93)/g2^8 + (g1*t^6.93)/g2^6 + (g1^2*t^6.93)/g2^4 + t^7.15/(g1^2*g2) + (g2*t^7.15)/g1 + g2^3*t^7.15 + g1*g2^5*t^7.15 + g1^2*g2^7*t^7.15 + t^7.16/(g1*g2^12) + t^7.16/g2^10 + (g1*t^7.16)/g2^8 + t^7.38/(g1^3*g2^5) + t^7.38/(g1^2*g2^3) + (3*t^7.38)/(g1*g2) + g2*t^7.38 + 3*g1*g2^3*t^7.38 + g1^2*g2^5*t^7.38 + g1^3*g2^7*t^7.38 + (g2^6*t^7.61)/g1^3 + (g2^10*t^7.61)/g1 + g1*g2^14*t^7.61 + g1^3*g2^18*t^7.61 + t^7.62/g2^14 + (2*t^7.62)/(g1^2*g2^5) + (3*t^7.62)/g2 + 2*g1^2*g2^3*t^7.62 + (g2^6*t^7.84)/g1^2 + g2^10*t^7.84 + g1^2*g2^14*t^7.84 + t^7.85/(g1^3*g2^9) + t^7.85/(g1^2*g2^7) + (3*t^7.85)/(g1*g2^5) + (2*t^7.85)/g2^3 + (3*g1*t^7.85)/g2 + g1^2*g2*t^7.85 + g1^3*g2^3*t^7.85 + (g2^2*t^8.07)/g1^3 + (2*g2^6*t^8.07)/g1 - g2^8*t^8.07 + 2*g1*g2^10*t^8.07 + g1^3*g2^14*t^8.07 - t^8.08/(g1^2*g2^9) - t^8.08/(g1*g2^7) - (4*t^8.08)/g2^5 - (g1*t^8.08)/g2^3 - (g1^2*t^8.08)/g2 + t^8.31/(g1^2*g2^11) + (2*t^8.31)/g2^7 + (g1^2*t^8.31)/g2^3 + (g2^2*t^8.31)/g1^2 + 2*g2^6*t^8.31 + g1^2*g2^10*t^8.31 + t^8.32/g2^20 + t^8.54/(g1*g2^11) + (g1*t^8.54)/g2^7 - (2*g2^2*t^8.54)/g1 - g2^4*t^8.54 - 2*g1*g2^6*t^8.54 + t^8.77/(g1*g2^13) + (g1*t^8.77)/g2^9 - 2*g2^2*t^8.77 - (g2*t^4.38)/y - t^6.46/(g2^4*y) - (g2^3*t^6.92)/(g1*y) - (g1*g2^7*t^6.92)/y - (g2^3*t^7.15)/y + t^7.62/(g1*g2^3*y) + t^7.62/(g2*y) + (g1*g2*t^7.62)/y + t^7.85/(g1*g2^5*y) + t^7.85/(g2^3*y) + (g1*t^7.85)/(g2*y) + (g2^8*t^8.07)/y + t^8.08/(g1*g2^7*y) + t^8.08/(g2^5*y) + (g1*t^8.08)/(g2^3*y) + (g2^4*t^8.31)/(g1*y) + (g2^6*t^8.31)/y + (g1*g2^8*t^8.31)/y + t^8.54/(g1^2*y) + (g2^2*t^8.54)/(g1*y) + (2*g2^4*t^8.54)/y + (g1*g2^6*t^8.54)/y + (g1^2*g2^8*t^8.54)/y + t^8.77/(g1*y) + (g2^2*t^8.77)/y + (g1*g2^4*t^8.77)/y - g2*t^4.38*y - (t^6.46*y)/g2^4 - (g2^3*t^6.92*y)/g1 - g1*g2^7*t^6.92*y - g2^3*t^7.15*y + (t^7.62*y)/(g1*g2^3) + (t^7.62*y)/g2 + g1*g2*t^7.62*y + (t^7.85*y)/(g1*g2^5) + (t^7.85*y)/g2^3 + (g1*t^7.85*y)/g2 + g2^8*t^8.07*y + (t^8.08*y)/(g1*g2^7) + (t^8.08*y)/g2^5 + (g1*t^8.08*y)/g2^3 + (g2^4*t^8.31*y)/g1 + g2^6*t^8.31*y + g1*g2^8*t^8.31*y + (t^8.54*y)/g1^2 + (g2^2*t^8.54*y)/g1 + 2*g2^4*t^8.54*y + g1*g2^6*t^8.54*y + g1^2*g2^8*t^8.54*y + (t^8.77*y)/g1 + g2^2*t^8.77*y + g1*g2^4*t^8.77*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55911 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5^2$ + $ M_3M_4$ + $ M_6\phi_1\tilde{q}_2^2$ + $ M_6q_2\tilde{q}_1$ | 0.733 | 0.9136 | 0.8024 | [X:[], M:[0.7778, 0.7778, 1.0, 1.0, 1.0, 0.7778], q:[0.6111, 0.6111], qb:[0.6111, 0.3889], phi:[0.4444]] | 3*t^2.33 + t^2.67 + 3*t^3. + t^3.67 + 3*t^4.33 + 6*t^4.67 + 9*t^5. + 7*t^5.33 + 3*t^5.67 - t^6. - t^4.33/y - t^4.33*y | detail | {a: 475/648, c: 74/81, M1: 7/9, M2: 7/9, M3: 1, M4: 1, M5: 1, M6: 7/9, q1: 11/18, q2: 11/18, qb1: 11/18, qb2: 7/18, phi1: 4/9} |
53002 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5^2$ + $ M_3M_4$ + $ M_6\phi_1\tilde{q}_2^2$ + $ \phi_1q_1\tilde{q}_1$ + $ M_2X_1$ | 0.5896 | 0.7288 | 0.809 | [X:[1.5909], M:[0.8634, 0.4091, 0.7728, 1.2272, 1.0, 0.9547], q:[0.6819, 0.4547], qb:[0.9091, 0.3181], phi:[0.4091]] | t^2.32 + t^2.45 + t^2.59 + t^2.86 + t^3. + t^3.55 + t^3.68 + t^3.96 + t^4.09 + t^4.64 + 2*t^4.77 + 2*t^4.91 + t^5.04 + 2*t^5.18 + 2*t^5.32 + t^5.45 + t^5.73 + t^5.86 - t^4.23/y - t^4.23*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46581 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_5q_1\tilde{q}_2$ + $ M_5^2$ + $ M_3M_4$ | 0.7194 | 0.8833 | 0.8145 | [X:[], M:[0.8377, 0.8377, 1.0, 1.0, 1.0], q:[0.5812, 0.5812], qb:[0.5812, 0.4188], phi:[0.4594]] | 2*t^2.51 + t^2.76 + 3*t^3. + t^3.49 + t^3.89 + 3*t^4.38 + 6*t^4.87 + 3*t^5.03 + 2*t^5.27 + 4*t^5.51 + 3*t^5.76 - 2*t^6. - t^4.38/y - t^4.38*y | detail |