Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
48143 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{6}\phi_{1}q_{2}^{2}$ 0.6243 0.7889 0.7913 [M:[0.9868, 1.0132, 0.7848, 0.9868, 0.7584, 0.732], q:[0.5688, 0.4444], qb:[0.418, 1.052], phi:[0.3792]] [M:[[1, -3], [-1, 3], [-2, 2], [1, -3], [0, -4], [2, -10]], q:[[0, -3], [-1, 6]], qb:[[1, 0], [0, 5]], phi:[[0, -2]]]
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }M_{4}$, ${ }M_{6}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}^{2}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{6}$, ${ }M_{4}M_{6}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{4}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{4}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$ ${}$ -3 t^2.196 + 2*t^2.275 + t^2.354 + t^2.587 + 2*t^2.96 + t^4.392 + t^4.41 + 2*t^4.471 + t^4.489 + 4*t^4.55 + 2*t^4.63 + t^4.709 + t^4.783 + 3*t^4.862 + t^4.941 + 2*t^5.157 + t^5.174 + 3*t^5.236 + t^5.315 + 2*t^5.548 + 2*t^5.921 - 3*t^6. - t^6.079 - t^6.373 - t^6.452 + t^6.588 + t^6.606 + 2*t^6.668 + t^6.685 + 4*t^6.747 + t^6.764 + 6*t^6.826 + t^6.843 + 4*t^6.905 + t^6.979 + 2*t^6.984 + t^6.997 + 2*t^7.059 + t^7.063 + t^7.076 + 4*t^7.138 + 2*t^7.217 + t^7.296 + 2*t^7.353 + 2*t^7.37 + 3*t^7.432 + 2*t^7.45 + 5*t^7.511 + t^7.59 + t^7.669 + 2*t^7.744 + t^7.761 + 3*t^7.823 - t^7.902 + 2*t^8.117 + t^8.135 - t^8.196 - t^8.214 - 6*t^8.275 - 5*t^8.354 - t^8.433 + t^8.508 - t^8.569 - 5*t^8.587 - 2*t^8.649 - 2*t^8.666 - 2*t^8.728 + t^8.785 + t^8.802 - t^8.807 + t^8.82 + 2*t^8.864 + 3*t^8.881 + t^8.899 + 4*t^8.943 - 5*t^8.96 + t^8.978 - t^4.138/y - t^6.334/y - (2*t^6.413)/y - t^6.492/y - t^7.098/y + t^7.177/y + (2*t^7.471)/y + (2*t^7.55)/y + (2*t^7.63)/y + (2*t^7.783)/y + (4*t^7.862)/y + (2*t^7.941)/y + (2*t^8.157)/y + (4*t^8.236)/y + (2*t^8.315)/y - t^8.53/y + (2*t^8.548)/y - (2*t^8.609)/y - (4*t^8.688)/y - (2*t^8.767)/y - t^8.846/y + t^8.921/y - t^4.138*y - t^6.334*y - 2*t^6.413*y - t^6.492*y - t^7.098*y + t^7.177*y + 2*t^7.471*y + 2*t^7.55*y + 2*t^7.63*y + 2*t^7.783*y + 4*t^7.862*y + 2*t^7.941*y + 2*t^8.157*y + 4*t^8.236*y + 2*t^8.315*y - t^8.53*y + 2*t^8.548*y - 2*t^8.609*y - 4*t^8.688*y - 2*t^8.767*y - t^8.846*y + t^8.921*y (g1^2*t^2.196)/g2^10 + (2*t^2.275)/g2^4 + (g2^2*t^2.354)/g1^2 + g2^6*t^2.587 + (2*g1*t^2.96)/g2^3 + (g1^4*t^4.392)/g2^20 + g1*g2^5*t^4.41 + (2*g1^2*t^4.471)/g2^14 + (g2^11*t^4.489)/g1 + (4*t^4.55)/g2^8 + (2*t^4.63)/(g1^2*g2^2) + (g2^4*t^4.709)/g1^4 + (g1^2*t^4.783)/g2^4 + 3*g2^2*t^4.862 + (g2^8*t^4.941)/g1^2 + (2*g1^3*t^5.157)/g2^13 + g2^12*t^5.174 + (3*g1*t^5.236)/g2^7 + t^5.315/(g1*g2) + 2*g1*g2^3*t^5.548 + (2*g1^2*t^5.921)/g2^6 - 3*t^6. - (g2^6*t^6.079)/g1^2 - (g1*t^6.373)/g2^9 - t^6.452/(g1*g2^3) + (g1^6*t^6.588)/g2^30 + (g1^3*t^6.606)/g2^5 + (2*g1^4*t^6.668)/g2^24 + g1*g2*t^6.685 + (4*g1^2*t^6.747)/g2^18 + (g2^7*t^6.764)/g1 + (6*t^6.826)/g2^12 + (g2^13*t^6.843)/g1^3 + (4*t^6.905)/(g1^2*g2^6) + (g1^4*t^6.979)/g2^14 + (2*t^6.984)/g1^4 + g1*g2^11*t^6.997 + (2*g1^2*t^7.059)/g2^8 + (g2^6*t^7.063)/g1^6 + (g2^17*t^7.076)/g1 + (4*t^7.138)/g2^2 + (2*g2^4*t^7.217)/g1^2 + (g2^10*t^7.296)/g1^4 + (2*g1^5*t^7.353)/g2^23 + 2*g1^2*g2^2*t^7.37 + (3*g1^3*t^7.432)/g2^17 + 2*g2^8*t^7.45 + (5*g1*t^7.511)/g2^11 + t^7.59/(g1*g2^5) + (g2*t^7.669)/g1^3 + (2*g1^3*t^7.744)/g2^7 + g2^18*t^7.761 + (3*g1*t^7.823)/g2 - (g2^5*t^7.902)/g1 + (2*g1^4*t^8.117)/g2^16 + g1*g2^9*t^8.135 - (g1^2*t^8.196)/g2^10 - (g2^15*t^8.214)/g1 - (6*t^8.275)/g2^4 - (5*g2^2*t^8.354)/g1^2 - (g2^8*t^8.433)/g1^4 + g1^2*t^8.508 - (g1^3*t^8.569)/g2^19 - 5*g2^6*t^8.587 - (2*g1*t^8.649)/g2^13 - (2*g2^12*t^8.666)/g1^2 - (2*t^8.728)/(g1*g2^7) + (g1^8*t^8.785)/g2^40 + (g1^5*t^8.802)/g2^15 - t^8.807/(g1^3*g2) + g1^2*g2^10*t^8.82 + (2*g1^6*t^8.864)/g2^34 + (3*g1^3*t^8.881)/g2^9 + g2^16*t^8.899 + (4*g1^4*t^8.943)/g2^28 - (5*g1*t^8.96)/g2^3 + (g2^22*t^8.978)/g1^2 - t^4.138/(g2^2*y) - (g1^2*t^6.334)/(g2^12*y) - (2*t^6.413)/(g2^6*y) - t^6.492/(g1^2*y) - (g1*t^7.098)/(g2^5*y) + (g2*t^7.177)/(g1*y) + (2*g1^2*t^7.471)/(g2^14*y) + (2*t^7.55)/(g2^8*y) + (2*t^7.63)/(g1^2*g2^2*y) + (2*g1^2*t^7.783)/(g2^4*y) + (4*g2^2*t^7.862)/y + (2*g2^8*t^7.941)/(g1^2*y) + (2*g1^3*t^8.157)/(g2^13*y) + (4*g1*t^8.236)/(g2^7*y) + (2*t^8.315)/(g1*g2*y) - (g1^4*t^8.53)/(g2^22*y) + (2*g1*g2^3*t^8.548)/y - (2*g1^2*t^8.609)/(g2^16*y) - (4*t^8.688)/(g2^10*y) - (2*t^8.767)/(g1^2*g2^4*y) - (g2^2*t^8.846)/(g1^4*y) + (g1^2*t^8.921)/(g2^6*y) - (t^4.138*y)/g2^2 - (g1^2*t^6.334*y)/g2^12 - (2*t^6.413*y)/g2^6 - (t^6.492*y)/g1^2 - (g1*t^7.098*y)/g2^5 + (g2*t^7.177*y)/g1 + (2*g1^2*t^7.471*y)/g2^14 + (2*t^7.55*y)/g2^8 + (2*t^7.63*y)/(g1^2*g2^2) + (2*g1^2*t^7.783*y)/g2^4 + 4*g2^2*t^7.862*y + (2*g2^8*t^7.941*y)/g1^2 + (2*g1^3*t^8.157*y)/g2^13 + (4*g1*t^8.236*y)/g2^7 + (2*t^8.315*y)/(g1*g2) - (g1^4*t^8.53*y)/g2^22 + 2*g1*g2^3*t^8.548*y - (2*g1^2*t^8.609*y)/g2^16 - (4*t^8.688*y)/g2^10 - (2*t^8.767*y)/(g1^2*g2^4) - (g2^2*t^8.846*y)/g1^4 + (g1^2*t^8.921*y)/g2^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46611 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{2}M_{4}$ + ${ }M_{5}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6052 0.7542 0.8024 [M:[1.0006, 0.9994, 0.7674, 1.0006, 0.7686], q:[0.5765, 0.4229], qb:[0.4241, 1.0392], phi:[0.3843]] t^2.302 + 2*t^2.306 + t^2.541 + 2*t^3.002 + t^3.69 + t^4.386 + t^4.39 + t^4.604 + 2*t^4.608 + 3*t^4.612 + t^4.843 + 3*t^4.847 + t^5.082 + t^5.304 + 3*t^5.308 + 2*t^5.543 + t^5.992 + t^5.996 - 3*t^6. - t^4.153/y - t^4.153*y detail