Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
48115 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ 0.6576 0.8714 0.7546 [X:[], M:[0.9473, 0.8427, 0.8418, 0.8418, 0.7364], q:[0.7368, 0.3159], qb:[0.4205, 0.4213], phi:[0.5264]] [X:[], M:[[-4], [26], [-12], [-12], [-20]], q:[[-1], [5]], qb:[[-25], [13]], phi:[[2]]]
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_5$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_3$, $ M_4$, $ \tilde{q}_1\tilde{q}_2$, $ M_2$, $ M_1$, $ \phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_3M_5$, $ M_4M_5$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_5\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_2M_5$, $ \phi_1q_1q_2$, $ M_2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_2q_2\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ M_1M_5$, $ \phi_1q_1\tilde{q}_1$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_2M_3$, $ M_2M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_1M_3$, $ M_1M_4$, $ M_5\phi_1^2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1M_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1^2$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$ $M_5\phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2\tilde{q}_1^2$ 3*t^2.21 + 4*t^2.53 + t^2.84 + t^3.16 + t^3.79 + 2*t^4.1 + t^4.11 + 6*t^4.42 + 6*t^4.73 + 6*t^4.74 + 12*t^5.05 + t^5.06 + 7*t^5.37 + 2*t^5.68 - 2*t^6. + 6*t^6.31 + 2*t^6.32 + 17*t^6.63 + 2*t^6.64 + 9*t^6.94 + 12*t^6.95 + 26*t^7.26 + 6*t^7.27 + 29*t^7.58 + 9*t^7.89 + 4*t^7.9 + t^8.2 - 3*t^8.21 + 7*t^8.52 - 14*t^8.53 + 23*t^8.84 + 2*t^8.85 - t^4.58/y - t^6.79/y - (2*t^7.1)/y - t^7.11/y + (3*t^7.42)/y + (6*t^7.73)/y + (6*t^7.74)/y + (12*t^8.05)/y + (8*t^8.37)/y + (3*t^8.68)/y + t^8.69/y - t^4.58*y - t^6.79*y - 2*t^7.1*y - t^7.11*y + 3*t^7.42*y + 6*t^7.73*y + 6*t^7.74*y + 12*t^8.05*y + 8*t^8.37*y + 3*t^8.68*y + t^8.69*y (2*t^2.21)/g1^20 + g1^18*t^2.21 + (3*t^2.53)/g1^12 + g1^26*t^2.53 + t^2.84/g1^4 + g1^4*t^3.16 + t^3.79/g1^18 + t^4.1/g1^48 + t^4.1/g1^10 + g1^28*t^4.11 + (3*t^4.42)/g1^40 + (2*t^4.42)/g1^2 + g1^36*t^4.42 + (6*t^4.73)/g1^32 + 5*g1^6*t^4.74 + g1^44*t^4.74 + (8*t^5.05)/g1^24 + 4*g1^14*t^5.05 + g1^52*t^5.06 + (5*t^5.37)/g1^16 + 2*g1^22*t^5.37 + (2*t^5.68)/g1^8 - 2*t^6. + t^6./g1^38 - g1^38*t^6. + (2*t^6.31)/g1^68 + (4*t^6.31)/g1^30 + g1^8*t^6.32 + g1^46*t^6.32 + (7*t^6.63)/g1^60 + (6*t^6.63)/g1^22 + 4*g1^16*t^6.63 + 2*g1^54*t^6.64 + (9*t^6.94)/g1^52 + (8*t^6.95)/g1^14 + 3*g1^24*t^6.95 + g1^62*t^6.95 + (15*t^7.26)/g1^44 + (11*t^7.26)/g1^6 + 5*g1^32*t^7.27 + g1^70*t^7.27 + (17*t^7.58)/g1^36 + 8*g1^2*t^7.58 + 3*g1^40*t^7.58 + g1^78*t^7.58 + t^7.89/g1^66 + (8*t^7.89)/g1^28 + 3*g1^10*t^7.9 + g1^48*t^7.9 + t^8.2/g1^96 + (2*t^8.21)/g1^58 - t^8.21/g1^20 - 4*g1^18*t^8.21 + (3*t^8.52)/g1^88 + (4*t^8.52)/g1^50 - (8*t^8.53)/g1^12 - 6*g1^26*t^8.53 + (11*t^8.84)/g1^80 + (12*t^8.84)/g1^42 - (2*t^8.84)/g1^4 + 2*g1^34*t^8.84 + 2*g1^72*t^8.85 - (g1^2*t^4.58)/y - t^6.79/(g1^18*y) - (2*t^7.1)/(g1^10*y) - (g1^28*t^7.11)/y + t^7.42/(g1^40*y) + (2*t^7.42)/(g1^2*y) + (6*t^7.73)/(g1^32*y) + (5*g1^6*t^7.74)/y + (g1^44*t^7.74)/y + (6*t^8.05)/(g1^24*y) + (6*g1^14*t^8.05)/y + (5*t^8.37)/(g1^16*y) + (3*g1^22*t^8.37)/y + (3*t^8.68)/(g1^8*y) + (g1^30*t^8.69)/y - g1^2*t^4.58*y - (t^6.79*y)/g1^18 - (2*t^7.1*y)/g1^10 - g1^28*t^7.11*y + (t^7.42*y)/g1^40 + (2*t^7.42*y)/g1^2 + (6*t^7.73*y)/g1^32 + 5*g1^6*t^7.74*y + g1^44*t^7.74*y + (6*t^8.05*y)/g1^24 + 6*g1^14*t^8.05*y + (5*t^8.37*y)/g1^16 + 3*g1^22*t^8.37*y + (3*t^8.68*y)/g1^8 + g1^30*t^8.69*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46507 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3\phi_1q_2^2$ + $ M_4\phi_1q_2^2$ 0.6381 0.8353 0.764 [X:[], M:[0.9488, 0.8329, 0.8463, 0.8463], q:[0.7372, 0.314], qb:[0.4299, 0.4165], phi:[0.5256]] t^2.19 + t^2.23 + t^2.5 + 3*t^2.54 + t^2.85 + t^3.15 + t^3.77 + t^3.81 + t^4.08 + t^4.12 + t^4.16 + t^4.38 + t^4.42 + t^4.46 + t^4.69 + 4*t^4.73 + 3*t^4.77 + t^5. + 4*t^5.04 + 7*t^5.08 + 2*t^5.35 + 4*t^5.39 + 2*t^5.69 - t^6. - t^4.58/y - t^4.58*y detail