Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47946 SU3adj1nf2 $q_1q_2\tilde{q}_1^2$ + $ M_1\phi_1q_1\tilde{q}_2$ 1.4949 1.7246 0.8668 [X:[], M:[0.6737], q:[0.4984, 0.4969], qb:[0.5023, 0.493], phi:[0.3349]] [X:[], M:[[1, 11, -5]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$\phi_1^2$, $ M_1$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_1\tilde{q}_1$, $ q_2\tilde{q}_1$, $ \phi_1^3$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1^4$, $ M_1\phi_1^2$, $ M_1^2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_1q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^5$, $ M_1q_1\tilde{q}_1$, $ M_1q_2\tilde{q}_1$, $ M_1\phi_1^3$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1q_2^2$, $ \phi_1q_1^2q_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_2^2$, $ q_1^2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1^3q_2\tilde{q}_2$, $ q_1^2\tilde{q}_1\tilde{q}_2$, $ \phi_1^3q_1\tilde{q}_2$ $M_1\phi_1q_2\tilde{q}_2$ -2 t^2.01 + t^2.02 + 2*t^2.97 + 2*t^3. + t^3.01 + t^3.97 + t^4. + t^4.01 + t^4.02 + t^4.03 + t^4.04 + 4*t^4.98 + t^4.99 + t^5. + 4*t^5.01 + 3*t^5.02 + t^5.04 + t^5.47 + t^5.48 + t^5.49 + t^5.5 + 2*t^5.94 + t^5.95 + 2*t^5.97 + 3*t^5.98 + t^5.99 - 2*t^6. + 2*t^6.01 + 3*t^6.02 + 2*t^6.03 + t^6.04 + t^6.05 + t^6.06 + t^6.47 + 2*t^6.49 + t^6.5 + t^6.94 + t^6.95 + 2*t^6.97 + 3*t^6.98 + 5*t^6.99 + 3*t^7. + t^7.01 + 7*t^7.02 + 4*t^7.03 + 3*t^7.04 + t^7.06 + t^7.45 + t^7.48 + 3*t^7.49 + 3*t^7.5 + 2*t^7.51 + t^7.52 + t^7.54 + 6*t^7.95 + 3*t^7.96 + 8*t^7.98 + 7*t^7.99 + 5*t^8. + t^8.02 + 5*t^8.03 + 3*t^8.04 + 2*t^8.05 + t^8.06 + t^8.07 + t^8.08 + 2*t^8.44 + t^8.45 + 3*t^8.46 + 2*t^8.47 + 2*t^8.48 + 3*t^8.5 + t^8.51 - t^8.52 - t^8.53 + 2*t^8.91 + 2*t^8.92 + 2*t^8.94 + 5*t^8.95 + 4*t^8.96 - 8*t^8.97 + 5*t^8.98 + 10*t^8.99 - t^4./y - t^5.01/y - t^6.01/y - t^6.03/y - t^6.97/y - t^6.98/y - t^7./y - t^7.01/y - (2*t^7.02)/y + t^7.98/y + t^7.99/y + (2*t^8.)/y + t^8.02/y - t^8.05/y + t^8.94/y + (3*t^8.97)/y + t^8.98/y - t^4.*y - t^5.01*y - t^6.01*y - t^6.03*y - t^6.97*y - t^6.98*y - t^7.*y - t^7.01*y - 2*t^7.02*y + t^7.98*y + t^7.99*y + 2*t^8.*y + t^8.02*y - t^8.05*y + t^8.94*y + 3*t^8.97*y + t^8.98*y (g2^2*t^2.01)/g3^2 + (g1*g2^11*t^2.02)/g3^5 + g1*g3^6*t^2.97 + (g3^6*t^2.97)/(g1*g2^12) + t^3./(g1*g2^6) + g1*g2^6*t^3. + (g2^3*t^3.01)/g3^3 + g1*g2*g3^5*t^3.97 + (g1*g2^7*t^4.)/g3 + t^4.01/(g1*g2^5*g3) + (g2^4*t^4.02)/g3^4 + (g1*g2^13*t^4.03)/g3^7 + (g1^2*g2^22*t^4.04)/g3^10 + (2*g3^4*t^4.98)/(g1*g2^10) + 2*g1*g2^2*g3^4*t^4.98 + g1^2*g2^11*g3*t^4.99 + (g3*t^5.)/g2 + (2*t^5.01)/(g1*g2^4*g3^2) + (2*g1*g2^8*t^5.01)/g3^2 + (2*g2^5*t^5.02)/g3^5 + (g1^2*g2^17*t^5.02)/g3^5 + (g1*g2^14*t^5.04)/g3^8 + g2^7*g3^11*t^5.47 + (g1*t^5.48)/(g2^11*g3) + t^5.49/(g1*g2^23*g3) + g2^13*g3^5*t^5.5 + g1^2*g3^12*t^5.94 + (g3^12*t^5.94)/g2^12 + (g3^12*t^5.95)/(g1^2*g2^24) + (g3^6*t^5.97)/g2^6 + g1^2*g2^6*g3^6*t^5.97 + 2*g1*g2^3*g3^3*t^5.98 + (g3^6*t^5.98)/(g1^2*g2^18) + (g3^3*t^5.99)/(g1*g2^9) - 3*t^6. + g1^2*g2^12*t^6. + (2*g1*g2^9*t^6.01)/g3^3 + (g1^2*g2^18*t^6.02)/g3^6 + (2*t^6.02)/(g1*g2^3*g3^3) + (2*g2^6*t^6.03)/g3^6 + (g1*g2^15*t^6.04)/g3^9 + (g1^2*g2^24*t^6.05)/g3^12 + (g1^3*g2^33*t^6.06)/g3^15 + g2^8*g3^10*t^6.47 + t^6.49/(g1*g2^22*g3^2) + (g1*t^6.49)/(g2^10*g3^2) + g2^14*g3^4*t^6.5 + g1^2*g2*g3^11*t^6.94 + (g3^11*t^6.95)/g2^11 + 2*g1^2*g2^7*g3^5*t^6.97 + (g3^5*t^6.98)/(g1^2*g2^17) + (2*g3^5*t^6.98)/g2^5 + (2*g3^2*t^6.99)/(g1*g2^8) + 3*g1*g2^4*g3^2*t^6.99 + (g2*t^7.)/g3 + (2*g1^2*g2^13*t^7.)/g3 + (g1^3*g2^22*t^7.01)/g3^4 + (3*t^7.02)/(g1*g2^2*g3^4) + (4*g1*g2^10*t^7.02)/g3^4 + (2*g2^7*t^7.03)/g3^7 + (2*g1^2*g2^19*t^7.03)/g3^7 + (2*g1*g2^16*t^7.04)/g3^10 + (g1^3*g2^28*t^7.04)/g3^10 + (g1^2*g2^25*t^7.06)/g3^13 + g2^3*g3^15*t^7.45 - t^7.48/g2^18 + 2*g2^9*g3^9*t^7.48 + (2*g1*t^7.49)/(g2^9*g3^3) + (g1^3*g2^3*t^7.49)/g3^3 + (g1^2*t^7.5)/g3^6 + t^7.5/(g1^3*g2^33*g3^3) + (2*t^7.5)/(g1*g2^21*g3^3) - (g2^6*g3^6*t^7.5)/g1 + 2*g2^15*g3^3*t^7.51 + g1*g2^24*t^7.52 + (g2^21*t^7.54)/g3^3 + (3*g3^10*t^7.95)/g2^10 + 3*g1^2*g2^2*g3^10*t^7.95 + g1^3*g2^11*g3^7*t^7.96 + (2*g3^10*t^7.96)/(g1^2*g2^22) + (4*g3^4*t^7.98)/g2^4 + 4*g1^2*g2^8*g3^4*t^7.98 + 3*g1*g2^5*g3*t^7.99 + g1^3*g2^17*g3*t^7.99 + (3*g3^4*t^7.99)/(g1^2*g2^16) + (3*g1^2*g2^14*t^8.)/g3^2 + (2*g3*t^8.)/(g1*g2^7) + t^8.01/(g1^2*g2^10*g3^2) - (g2^2*t^8.01)/g3^2 + (g1^3*g2^23*t^8.02)/g3^5 + (2*g1^2*g2^20*t^8.03)/g3^8 + (3*t^8.03)/(g1*g2*g3^5) + (g1^3*g2^29*t^8.04)/g3^11 + (2*g2^8*t^8.04)/g3^8 + (2*g1*g2^17*t^8.05)/g3^11 + (g1^2*g2^26*t^8.06)/g3^14 + (g1^3*g2^35*t^8.07)/g3^17 + (g1^4*g2^44*t^8.08)/g3^20 + (g3^17*t^8.44)/(g1*g2^5) + g1*g2^7*g3^17*t^8.44 + (g1^2*g3^5*t^8.45)/g2^11 + (g3^5*t^8.46)/(g1^2*g2^35) + (2*g3^5*t^8.46)/g2^23 + (g2*g3^11*t^8.47)/g1 + g1*g2^13*g3^11*t^8.47 + 2*g2^10*g3^8*t^8.48 + (2*t^8.5)/(g1*g2^20*g3^4) + (2*g1*t^8.5)/(g2^8*g3^4) - (g2^7*g3^5*t^8.5)/g1 - t^8.51/(g2^11*g3^7) + 2*g2^16*g3^2*t^8.51 - t^8.52/(g1^2*g2^23*g3^7) - (g2^13*t^8.53)/(g1*g3) + g1^3*g3^18*t^8.91 + (g1*g3^18*t^8.91)/g2^12 + (g3^18*t^8.92)/(g1^3*g2^36) + (g3^18*t^8.92)/(g1*g2^24) + (g1*g3^12*t^8.94)/g2^6 + g1^3*g2^6*g3^12*t^8.94 + 3*g1^2*g2^3*g3^9*t^8.95 + (g3^12*t^8.95)/(g1^3*g2^30) + (g3^12*t^8.95)/(g1*g2^18) + (g3^9*t^8.96)/(g1^2*g2^21) + (3*g3^9*t^8.96)/g2^9 - 4*g1*g3^6*t^8.97 - (5*g3^6*t^8.97)/(g1*g2^12) + g1^3*g2^12*g3^6*t^8.97 + 5*g1^2*g2^9*g3^3*t^8.98 + 2*g1^3*g2^18*t^8.99 + (3*g3^3*t^8.99)/(g1^2*g2^15) + (5*g3^3*t^8.99)/g2^3 - (g2*t^4.)/(g3*y) - (g2^2*t^5.01)/(g3^2*y) - (g2^3*t^6.01)/(g3^3*y) - (g1*g2^12*t^6.03)/(g3^6*y) - (g1*g2*g3^5*t^6.97)/y - (g3^5*t^6.98)/(g1*g2^11*y) - (g1*g2^7*t^7.)/(g3*y) - t^7.01/(g1*g2^5*g3*y) - (2*g2^4*t^7.02)/(g3^4*y) + (g3^4*t^7.98)/(g1*g2^10*y) + (g1^2*g2^11*g3*t^7.99)/y + (2*g3*t^8.)/(g2*y) + (g1^2*g2^17*t^8.02)/(g3^5*y) - (g1^2*g2^23*t^8.05)/(g3^11*y) + (g3^12*t^8.94)/(g2^12*y) + (2*g3^6*t^8.97)/(g2^6*y) + (g1^2*g2^6*g3^6*t^8.97)/y + (g3^6*t^8.98)/(g1^2*g2^18*y) - (g2*t^4.*y)/g3 - (g2^2*t^5.01*y)/g3^2 - (g2^3*t^6.01*y)/g3^3 - (g1*g2^12*t^6.03*y)/g3^6 - g1*g2*g3^5*t^6.97*y - (g3^5*t^6.98*y)/(g1*g2^11) - (g1*g2^7*t^7.*y)/g3 - (t^7.01*y)/(g1*g2^5*g3) - (2*g2^4*t^7.02*y)/g3^4 + (g3^4*t^7.98*y)/(g1*g2^10) + g1^2*g2^11*g3*t^7.99*y + (2*g3*t^8.*y)/g2 + (g1^2*g2^17*t^8.02*y)/g3^5 - (g1^2*g2^23*t^8.05*y)/g3^11 + (g3^12*t^8.94*y)/g2^12 + (2*g3^6*t^8.97*y)/g2^6 + g1^2*g2^6*g3^6*t^8.97*y + (g3^6*t^8.98*y)/(g1^2*g2^18)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47867 SU3adj1nf2 $q_1q_2\tilde{q}_1^2$ 1.4741 1.6835 0.8756 [X:[], M:[], q:[0.4973, 0.4973], qb:[0.5027, 0.4919], phi:[0.3351]] t^2.01 + 2*t^2.97 + 2*t^3. + t^3.02 + 2*t^3.97 + 2*t^4.01 + t^4.02 + 4*t^4.98 + 4*t^5.01 + t^5.03 + t^5.46 + 2*t^5.48 + t^5.5 + 3*t^5.93 + 3*t^5.97 + 4*t^5.98 - 3*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y detail