Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47944 | SU3adj1nf2 | $q_1q_2\tilde{q}_1^2$ + $ \phi_1q_1^2q_2$ + $ \phi_1^2X_1$ | 1.4415 | 1.6256 | 0.8868 | [X:[1.3426], M:[], q:[0.5765, 0.5182], qb:[0.4526, 0.4803], phi:[0.3287]] | [X:[[0, 2]], M:[], q:[[2, -11], [-4, 23]], qb:[[1, -6], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$q_2\tilde{q}_1$, $ \phi_1^3$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ X_1$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_1q_2^2$, $ \phi_1^3q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1^3q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$ | . | -2 | t^2.91 + t^2.96 + t^3. + t^3.09 + t^3.17 + t^3.9 + t^3.98 + t^4.03 + t^4.07 + t^4.16 + t^4.88 + t^4.97 + t^5.06 + 2*t^5.14 + t^5.23 + t^5.83 + t^5.87 + t^5.91 + t^5.95 + t^5.99 - 2*t^6. + t^6.05 + t^6.08 + 2*t^6.13 + t^6.17 + t^6.21 + t^6.26 + t^6.34 + t^6.81 + t^6.86 + 2*t^6.89 - t^6.9 + 2*t^6.94 + t^6.98 + t^6.99 + t^7.02 + 2*t^7.03 + 2*t^7.07 + 3*t^7.12 + 2*t^7.15 + 2*t^7.2 + t^7.24 + t^7.28 + t^7.33 + t^7.62 + 2*t^7.8 + 3*t^7.88 - t^7.89 + 2*t^7.96 + t^7.97 + t^8.02 + 4*t^8.06 + 2*t^8.1 + 4*t^8.14 + t^8.15 + t^8.18 + t^8.22 + 2*t^8.23 + 3*t^8.31 + t^8.4 - t^8.65 + 2*t^8.78 + t^8.82 - t^8.83 + 3*t^8.87 + t^8.9 - 3*t^8.91 + 2*t^8.95 + t^8.99 + t^8.96/y^2 - t^3.99/y - t^4.97/y - t^6.9/y - t^6.94/y - t^6.98/y - t^7.07/y - t^7.16/y - t^7.88/y - t^7.93/y - t^7.97/y - t^8.06/y - t^8.14/y + t^8.91/y - t^3.99*y - t^4.97*y - t^6.9*y - t^6.94*y - t^6.98*y - t^7.07*y - t^7.16*y - t^7.88*y - t^7.93*y - t^7.97*y - t^8.06*y - t^8.14*y + t^8.91*y + t^8.96*y^2 | (g2^17*t^2.91)/g1^3 + t^2.96/g2^3 + (g2^23*t^3.)/g1^3 + (g1^3*t^3.09)/g2^17 + (g1^3*t^3.17)/g2^11 + (g2^16*t^3.9)/g1^3 + (g2^22*t^3.98)/g1^3 + g2^2*t^4.03 + (g1^3*t^4.07)/g2^18 + (g1^3*t^4.16)/g2^12 + (g2^15*t^4.88)/g1^3 + (g2^21*t^4.97)/g1^3 + (g1^3*t^5.06)/g2^19 + (2*g1^3*t^5.14)/g2^13 + (g1^3*t^5.23)/g2^7 + (g2^34*t^5.83)/g1^6 + (g2^14*t^5.87)/g1^3 + (g2^40*t^5.91)/g1^6 + (g2^20*t^5.95)/g1^3 + (g2^46*t^5.99)/g1^6 - 2*t^6. + (g1^3*t^6.05)/g2^20 + g2^6*t^6.08 + (2*g1^3*t^6.13)/g2^14 + g2^12*t^6.17 + (g1^3*t^6.21)/g2^8 + (g1^6*t^6.26)/g2^28 + (g1^6*t^6.34)/g2^22 + (g2^33*t^6.81)/g1^6 + (g2^13*t^6.86)/g1^3 + (2*g2^39*t^6.89)/g1^6 - t^6.9/g2^7 + (2*g2^19*t^6.94)/g1^3 + (g2^45*t^6.98)/g1^6 + t^6.99/g2 + (g2^25*t^7.02)/g1^3 + (2*g1^3*t^7.03)/g2^21 + 2*g2^5*t^7.07 + (3*g1^3*t^7.12)/g2^15 + 2*g2^11*t^7.15 + (2*g1^3*t^7.2)/g2^9 + (g1^6*t^7.24)/g2^29 + (g1^3*t^7.28)/g2^3 + (g1^6*t^7.33)/g2^23 + (g2^66*t^7.62)/g1^12 + (2*g2^32*t^7.8)/g1^6 + (3*g2^38*t^7.88)/g1^6 - t^7.89/g2^8 + (2*g2^44*t^7.96)/g1^6 + t^7.97/g2^2 + (g1^3*t^8.02)/g2^22 + 4*g2^4*t^8.06 + (2*g1^3*t^8.1)/g2^16 + 4*g2^10*t^8.14 + (g1^6*t^8.15)/g2^36 + (g1^3*t^8.18)/g2^10 + g2^16*t^8.22 + (2*g1^6*t^8.23)/g2^30 + (3*g1^6*t^8.31)/g2^24 + (g1^6*t^8.4)/g2^18 - (g2^45*t^8.65)/g1^9 + (2*g2^31*t^8.78)/g1^6 + (g2^57*t^8.82)/g1^9 - (g2^11*t^8.83)/g1^3 + (3*g2^37*t^8.87)/g1^6 + (g2^63*t^8.9)/g1^9 - (3*g2^17*t^8.91)/g1^3 + (2*g2^43*t^8.95)/g1^6 + (g2^69*t^8.99)/g1^9 + t^8.96/(g2^3*y^2) - t^3.99/(g2*y) - t^4.97/(g2^2*y) - (g2^16*t^6.9)/(g1^3*y) - t^6.94/(g2^4*y) - (g2^22*t^6.98)/(g1^3*y) - (g1^3*t^7.07)/(g2^18*y) - (g1^3*t^7.16)/(g2^12*y) - (g2^15*t^7.88)/(g1^3*y) - t^7.93/(g2^5*y) - (g2^21*t^7.97)/(g1^3*y) - (g1^3*t^8.06)/(g2^19*y) - (g1^3*t^8.14)/(g2^13*y) + (g2^40*t^8.91)/(g1^6*y) - (t^3.99*y)/g2 - (t^4.97*y)/g2^2 - (g2^16*t^6.9*y)/g1^3 - (t^6.94*y)/g2^4 - (g2^22*t^6.98*y)/g1^3 - (g1^3*t^7.07*y)/g2^18 - (g1^3*t^7.16*y)/g2^12 - (g2^15*t^7.88*y)/g1^3 - (t^7.93*y)/g2^5 - (g2^21*t^7.97*y)/g1^3 - (g1^3*t^8.06*y)/g2^19 - (g1^3*t^8.14*y)/g2^13 + (g2^40*t^8.91*y)/g1^6 + (t^8.96*y^2)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47867 | SU3adj1nf2 | $q_1q_2\tilde{q}_1^2$ | 1.4741 | 1.6835 | 0.8756 | [X:[], M:[], q:[0.4973, 0.4973], qb:[0.5027, 0.4919], phi:[0.3351]] | t^2.01 + 2*t^2.97 + 2*t^3. + t^3.02 + 2*t^3.97 + 2*t^4.01 + t^4.02 + 4*t^4.98 + 4*t^5.01 + t^5.03 + t^5.46 + 2*t^5.48 + t^5.5 + 3*t^5.93 + 3*t^5.97 + 4*t^5.98 - 3*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y | detail |