Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47927 SU3adj1nf2 $\phi_1^5$ + $ \phi_1q_1^2q_2$ 1.3249 1.5749 0.8413 [X:[], M:[], q:[0.5888, 0.4225], qb:[0.2944, 0.2944], phi:[0.4]] [X:[], M:[], q:[[1, 1], [-2, -2]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1^3$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_1^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^4$, $ q_1q_2\tilde{q}_1^2$, $ q_1q_2\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ q_1q_2\tilde{q}_1^2$, $ q_1q_2\tilde{q}_2^2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1^2\tilde{q}_1^2\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2^2$, $ q_1^2\tilde{q}_1^2$, $ q_1^2\tilde{q}_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ \phi_1q_2^2\tilde{q}_1^2$, $ \phi_1q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_2^2$, $ \phi_1^3q_2\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_2$ $2\phi_1q_1q_2\tilde{q}_1^2$, $ 3\phi_1q_1q_2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1^3\tilde{q}_2$, $ 2\phi_1q_1q_2\tilde{q}_2^2$, $ 2\phi_1q_2\tilde{q}_1^2\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_1\tilde{q}_2^3$ 7 2*t^2.15 + t^2.4 + 2*t^2.65 + 2*t^3.35 + t^3.6 + 4*t^3.85 + 3*t^4.3 + 4*t^4.55 + 5*t^4.8 + 6*t^5.05 + 3*t^5.3 + 4*t^5.5 + 4*t^5.75 + 7*t^6. + 10*t^6.25 + 4*t^6.45 + 6*t^6.5 + 10*t^6.7 + 10*t^6.95 + 16*t^7.2 + t^7.4 + 12*t^7.45 + 6*t^7.65 + 15*t^7.7 + 11*t^7.9 + 4*t^7.95 + 10*t^8.15 + 23*t^8.4 + 5*t^8.6 + 12*t^8.65 + 14*t^8.85 + 25*t^8.9 - t^4.2/y - t^5.4/y - (2*t^6.35)/y - t^6.6/y - (2*t^6.85)/y + t^7.3/y + (3*t^7.8)/y + t^8.3/y + t^8.5/y - t^4.2*y - t^5.4*y - 2*t^6.35*y - t^6.6*y - 2*t^6.85*y + t^7.3*y + 3*t^7.8*y + t^8.3*y + t^8.5*y t^2.15/(g1*g2^2) + t^2.15/(g1^2*g2) + t^2.4 + g1^2*g2*t^2.65 + g1*g2^2*t^2.65 + t^3.35/(g1*g2^2) + t^3.35/(g1^2*g2) + t^3.6 + 2*g1^2*g2*t^3.85 + 2*g1*g2^2*t^3.85 + t^4.3/(g1^2*g2^4) + t^4.3/(g1^3*g2^3) + t^4.3/(g1^4*g2^2) + (2*t^4.55)/(g1*g2^2) + (2*t^4.55)/(g1^2*g2) + 3*t^4.8 + (g1*t^4.8)/g2 + (g2*t^4.8)/g1 + 3*g1^2*g2*t^5.05 + 3*g1*g2^2*t^5.05 + g1^4*g2^2*t^5.3 + g1^3*g2^3*t^5.3 + g1^2*g2^4*t^5.3 + t^5.5/(g1^2*g2^4) + (2*t^5.5)/(g1^3*g2^3) + t^5.5/(g1^4*g2^2) + (2*t^5.75)/(g1*g2^2) + (2*t^5.75)/(g1^2*g2) + 3*t^6. + (2*g1*t^6.)/g2 + (2*g2*t^6.)/g1 + g1^3*t^6.25 + 4*g1^2*g2*t^6.25 + 4*g1*g2^2*t^6.25 + g2^3*t^6.25 + t^6.45/(g1^3*g2^6) + t^6.45/(g1^4*g2^5) + t^6.45/(g1^5*g2^4) + t^6.45/(g1^6*g2^3) + 2*g1^4*g2^2*t^6.5 + 2*g1^3*g2^3*t^6.5 + 2*g1^2*g2^4*t^6.5 + (3*t^6.7)/(g1^2*g2^4) + (4*t^6.7)/(g1^3*g2^3) + (3*t^6.7)/(g1^4*g2^2) + t^6.95/g1^3 + t^6.95/g2^3 + (4*t^6.95)/(g1*g2^2) + (4*t^6.95)/(g1^2*g2) + 8*t^7.2 + (4*g1*t^7.2)/g2 + (4*g2*t^7.2)/g1 + t^7.4/(g1^6*g2^6) + g1^3*t^7.45 + 5*g1^2*g2*t^7.45 + 5*g1*g2^2*t^7.45 + g2^3*t^7.45 + t^7.65/(g1^3*g2^6) + (2*t^7.65)/(g1^4*g2^5) + (2*t^7.65)/(g1^5*g2^4) + t^7.65/(g1^6*g2^3) + 5*g1^4*g2^2*t^7.7 + 5*g1^3*g2^3*t^7.7 + 5*g1^2*g2^4*t^7.7 + (3*t^7.9)/(g1^2*g2^4) + (5*t^7.9)/(g1^3*g2^3) + (3*t^7.9)/(g1^4*g2^2) + g1^6*g2^3*t^7.95 + g1^5*g2^4*t^7.95 + g1^4*g2^5*t^7.95 + g1^3*g2^6*t^7.95 + (2*t^8.15)/g1^3 + (2*t^8.15)/g2^3 + (3*t^8.15)/(g1*g2^2) + (3*t^8.15)/(g1^2*g2) + 9*t^8.4 + (g1^2*t^8.4)/g2^2 + (6*g1*t^8.4)/g2 + (6*g2*t^8.4)/g1 + (g2^2*t^8.4)/g1^2 + t^8.6/(g1^4*g2^8) + t^8.6/(g1^5*g2^7) + t^8.6/(g1^6*g2^6) + t^8.6/(g1^7*g2^5) + t^8.6/(g1^8*g2^4) + 2*g1^3*t^8.65 + 4*g1^2*g2*t^8.65 + 4*g1*g2^2*t^8.65 + 2*g2^3*t^8.65 + (3*t^8.85)/(g1^3*g2^6) + (4*t^8.85)/(g1^4*g2^5) + (4*t^8.85)/(g1^5*g2^4) + (3*t^8.85)/(g1^6*g2^3) + g1^5*g2*t^8.9 + 7*g1^4*g2^2*t^8.9 + 9*g1^3*g2^3*t^8.9 + 7*g1^2*g2^4*t^8.9 + g1*g2^5*t^8.9 - t^4.2/y - t^5.4/y - t^6.35/(g1*g2^2*y) - t^6.35/(g1^2*g2*y) - t^6.6/y - (g1^2*g2*t^6.85)/y - (g1*g2^2*t^6.85)/y + t^7.3/(g1^3*g2^3*y) + t^7.8/y + (g1*t^7.8)/(g2*y) + (g2*t^7.8)/(g1*y) + (g1^3*g2^3*t^8.3)/y + t^8.5/(g1^3*g2^3*y) - t^4.2*y - t^5.4*y - (t^6.35*y)/(g1*g2^2) - (t^6.35*y)/(g1^2*g2) - t^6.6*y - g1^2*g2*t^6.85*y - g1*g2^2*t^6.85*y + (t^7.3*y)/(g1^3*g2^3) + t^7.8*y + (g1*t^7.8*y)/g2 + (g2*t^7.8*y)/g1 + g1^3*g2^3*t^8.3*y + (t^8.5*y)/(g1^3*g2^3)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47871 SU3adj1nf2 $\phi_1^5$ 1.41 1.66 0.8494 [X:[], M:[], q:[0.4, 0.4], qb:[0.4, 0.4], phi:[0.4]] 5*t^2.4 + 5*t^3.6 + 23*t^4.8 + 21*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 141/100, c: 83/50, q1: 2/5, q2: 2/5, qb1: 2/5, qb2: 2/5, phi1: 2/5}