Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
47920 | SU3adj1nf2 | $q_1q_2\tilde{q}_1^2$ + $ M_1q_1\tilde{q}_1$ | 1.4749 | 1.6855 | 0.8751 | [X:[], M:[0.9816], q:[0.5159, 0.4791], qb:[0.5025, 0.4919], phi:[0.3351]] | [X:[], M:[[1, 6, 0]], q:[[-1, -12, 0], [1, 0, 0]], qb:[[0, 6, 0], [0, 0, 6]], phi:[[0, 1, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$\phi_1^2$, $ q_2\tilde{q}_2$, $ M_1$, $ q_2\tilde{q}_1$, $ \phi_1^3$, $ q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1^4$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^5$, $ \phi_1^2q_1\tilde{q}_2$, $ \phi_1^2q_1\tilde{q}_1$, $ \phi_1q_1q_2^2$, $ \phi_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2\tilde{q}_2$, $ \phi_1q_1^2q_2$, $ q_2^2\tilde{q}_2^2$, $ M_1q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_1q_2\tilde{q}_1$, $ \phi_1^3q_2\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_1\phi_1^3$, $ \phi_1^3q_2\tilde{q}_1$, $ M_1q_1\tilde{q}_2$ | . | -4 | t^2.01 + t^2.91 + 2*t^2.94 + 2*t^3.02 + t^3.92 + t^3.95 + t^4.02 + t^4.03 + t^4.06 + 2*t^4.92 + 3*t^4.96 + 3*t^5.03 + t^5.07 + t^5.43 + t^5.46 + t^5.5 + t^5.54 + t^5.83 + 2*t^5.86 + 2*t^5.89 + 2*t^5.93 + t^5.94 + 3*t^5.96 + t^5.97 - 4*t^6. + t^6.03 + 2*t^6.04 + t^6.05 + t^6.07 - t^6.11 + t^6.43 + t^6.47 + t^6.5 + t^6.54 + t^6.83 + 3*t^6.86 + t^6.9 + 3*t^6.93 + 2*t^6.94 + 7*t^6.97 - t^7.01 + 3*t^7.04 + t^7.05 + 3*t^7.08 - t^7.12 + t^7.33 + 2*t^7.44 + 2*t^7.47 - t^7.48 + t^7.51 + t^7.54 + t^7.55 + t^7.66 + 3*t^7.84 + 6*t^7.87 + 4*t^7.9 - t^7.91 + 2*t^7.94 + 4*t^7.95 + 4*t^7.97 + 5*t^7.98 - 3*t^8.01 - t^8.02 + 2*t^8.05 + 3*t^8.06 + 2*t^8.08 + 2*t^8.09 - t^8.12 + t^8.34 + t^8.37 + t^8.38 - t^8.4 + 2*t^8.41 + 2*t^8.44 + 2*t^8.45 - t^8.47 + 2*t^8.48 + t^8.49 + t^8.56 - t^8.58 - t^8.59 - t^8.62 + t^8.74 + 2*t^8.77 + 2*t^8.8 + 2*t^8.83 + 3*t^8.84 + t^8.85 + 7*t^8.87 + t^8.88 - t^8.91 - 5*t^8.94 + 5*t^8.95 + t^8.96 + 12*t^8.98 + t^8.99 - t^4.01/y - t^5.01/y - t^6.02/y - t^6.92/y - (2*t^6.95)/y - (2*t^7.02)/y - t^7.03/y + t^7.99/y - t^8.03/y + (2*t^8.86)/y + t^8.89/y + t^8.94/y + (2*t^8.97)/y - t^4.01*y - t^5.01*y - t^6.02*y - t^6.92*y - 2*t^6.95*y - 2*t^7.02*y - t^7.03*y + t^7.99*y - t^8.03*y + 2*t^8.86*y + t^8.89*y + t^8.94*y + 2*t^8.97*y | (g2^2*t^2.01)/g3^2 + g1*g3^6*t^2.91 + 2*g1*g2^6*t^2.94 + (g2^3*t^3.02)/g3^3 + (g3^6*t^3.02)/(g1*g2^12) + g1*g2*g3^5*t^3.92 + (g1*g2^7*t^3.95)/g3 + (g2^4*t^4.02)/g3^4 + (g3^5*t^4.03)/(g1*g2^11) + t^4.06/(g1*g2^5*g3) + 2*g1*g2^2*g3^4*t^4.92 + (3*g1*g2^8*t^4.96)/g3^2 + (g2^5*t^5.03)/g3^5 + (2*g3^4*t^5.03)/(g1*g2^10) + t^5.07/(g1*g2^4*g3^2) + (g1*t^5.43)/(g2^11*g3) + g2^7*g3^11*t^5.46 + g2^13*g3^5*t^5.5 + t^5.54/(g1*g2^23*g3) + g1^2*g3^12*t^5.83 + 2*g1^2*g2^6*g3^6*t^5.86 + 2*g1^2*g2^12*t^5.89 + 2*g1*g2^3*g3^3*t^5.93 + (g3^12*t^5.94)/g2^12 + (3*g1*g2^9*t^5.96)/g3^3 + (g3^6*t^5.97)/g2^6 - 4*t^6. + (g2^6*t^6.03)/g3^6 + (2*g3^3*t^6.04)/(g1*g2^9) + (g3^12*t^6.05)/(g1^2*g2^24) + t^6.07/(g1*g2^3*g3^3) - t^6.11/(g1^2*g2^12) + (g1*t^6.43)/(g2^10*g3^2) + g2^8*g3^10*t^6.47 + g2^14*g3^4*t^6.5 + t^6.54/(g1*g2^22*g3^2) + g1^2*g2*g3^11*t^6.83 + 3*g1^2*g2^7*g3^5*t^6.86 + (g1^2*g2^13*t^6.9)/g3 + 3*g1*g2^4*g3^2*t^6.93 + (2*g3^11*t^6.94)/g2^11 + (4*g1*g2^10*t^6.97)/g3^4 + (3*g3^5*t^6.97)/g2^5 - (g2*t^7.01)/g3 + (3*g3^2*t^7.04)/(g1*g2^8) + (g3^11*t^7.05)/(g1^2*g2^23) + (2*t^7.08)/(g1*g2^2*g3^4) + (g3^5*t^7.08)/(g1^2*g2^17) - t^7.12/(g1^2*g2^11*g3) + (g1^3*g2^3*t^7.33)/g3^3 + (2*g1*t^7.44)/(g2^9*g3^3) - g1*g2^18*g3^6*t^7.44 + g2^3*g3^15*t^7.44 + 2*g2^9*g3^9*t^7.47 - t^7.48/g2^18 - t^7.51/(g2^12*g3^6) + 2*g2^15*g3^3*t^7.51 + (g2^21*t^7.54)/g3^3 + (2*t^7.55)/(g1*g2^21*g3^3) - (g2^6*g3^6*t^7.55)/g1 + t^7.66/(g1^3*g2^33*g3^3) + 3*g1^2*g2^2*g3^10*t^7.84 + 6*g1^2*g2^8*g3^4*t^7.87 + (4*g1^2*g2^14*t^7.9)/g3^2 - (g1*g3^7*t^7.91)/g2 + 2*g1*g2^5*g3*t^7.94 + (4*g3^10*t^7.95)/g2^10 + (4*g1*g2^11*t^7.97)/g3^5 + (5*g3^4*t^7.98)/g2^4 - (3*g2^2*t^8.01)/g3^2 - (g3^7*t^8.02)/(g1*g2^13) + (2*g3*t^8.05)/(g1*g2^7) + (3*g3^10*t^8.06)/(g1^2*g2^22) + (2*t^8.08)/(g1*g2*g3^5) + (2*g3^4*t^8.09)/(g1^2*g2^16) - t^8.12/(g1^2*g2^10*g3^2) + (g1^2*g3^5*t^8.34)/g2^11 + (g1^2*t^8.37)/(g2^5*g3) + g1*g2^7*g3^17*t^8.38 - (g1^2*g2*t^8.4)/g3^7 + 2*g1*g2^13*g3^11*t^8.41 + (2*g1*t^8.44)/(g2^8*g3^4) + (2*g3^5*t^8.45)/g2^23 - (g1*g2^25*t^8.47)/g3 + 2*g2^10*g3^8*t^8.48 + (g3^17*t^8.49)/(g1*g2^5) - (2*t^8.51)/(g2^11*g3^7) + 2*g2^16*g3^2*t^8.51 + (2*t^8.55)/(g1*g2^20*g3^4) - (2*g2^7*g3^5*t^8.55)/g1 + (g3^5*t^8.56)/(g1^2*g2^35) - (g2^13*t^8.58)/(g1*g3) - t^8.59/(g1^2*g2^29*g3) - t^8.62/(g1^2*g2^23*g3^7) + g1^3*g3^18*t^8.74 + 2*g1^3*g2^6*g3^12*t^8.77 + 2*g1^3*g2^12*g3^6*t^8.8 + 2*g1^3*g2^18*t^8.83 + 3*g1^2*g2^3*g3^9*t^8.84 + (g1*g3^18*t^8.85)/g2^12 + 7*g1^2*g2^9*g3^3*t^8.87 + (g1*g3^12*t^8.88)/g2^6 + (4*g1^2*g2^15*t^8.91)/g3^3 - 5*g1*g3^6*t^8.91 - 5*g1*g2^6*t^8.94 + (5*g3^9*t^8.95)/g2^9 + (g3^18*t^8.96)/(g1*g2^24) + (5*g1*g2^12*t^8.98)/g3^6 + (7*g3^3*t^8.98)/g2^3 + (g3^12*t^8.99)/(g1*g2^18) - (g2*t^4.01)/(g3*y) - (g2^2*t^5.01)/(g3^2*y) - (g2^3*t^6.02)/(g3^3*y) - (g1*g2*g3^5*t^6.92)/y - (2*g1*g2^7*t^6.95)/(g3*y) - (2*g2^4*t^7.02)/(g3^4*y) - (g3^5*t^7.03)/(g1*g2^11*y) + (g3*t^7.99)/(g2*y) - (g2^5*t^8.03)/(g3^5*y) + (2*g1^2*g2^6*g3^6*t^8.86)/y + (g1^2*g2^12*t^8.89)/y + (g3^12*t^8.94)/(g2^12*y) + (2*g3^6*t^8.97)/(g2^6*y) - (g2*t^4.01*y)/g3 - (g2^2*t^5.01*y)/g3^2 - (g2^3*t^6.02*y)/g3^3 - g1*g2*g3^5*t^6.92*y - (2*g1*g2^7*t^6.95*y)/g3 - (2*g2^4*t^7.02*y)/g3^4 - (g3^5*t^7.03*y)/(g1*g2^11) + (g3*t^7.99*y)/g2 - (g2^5*t^8.03*y)/g3^5 + 2*g1^2*g2^6*g3^6*t^8.86*y + g1^2*g2^12*t^8.89*y + (g3^12*t^8.94*y)/g2^12 + (2*g3^6*t^8.97*y)/g2^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47867 | SU3adj1nf2 | $q_1q_2\tilde{q}_1^2$ | 1.4741 | 1.6835 | 0.8756 | [X:[], M:[], q:[0.4973, 0.4973], qb:[0.5027, 0.4919], phi:[0.3351]] | t^2.01 + 2*t^2.97 + 2*t^3. + t^3.02 + 2*t^3.97 + 2*t^4.01 + t^4.02 + 4*t^4.98 + 4*t^5.01 + t^5.03 + t^5.46 + 2*t^5.48 + t^5.5 + 3*t^5.93 + 3*t^5.97 + 4*t^5.98 - 3*t^6. - t^4.01/y - t^5.01/y - t^4.01*y - t^5.01*y | detail |