Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4789 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{2}X_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}X_{2}$ + ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{2}$ 0.6058 0.7582 0.799 [X:[1.4144, 1.6096], M:[0.976, 0.5856, 0.3904, 1.1711, 0.8289, 0.7327, 1.024, 0.7808], q:[0.7313, 0.2928], qb:[0.8784, 0.5361], phi:[0.3904]] [X:[[6], [4]], M:[[-10], [-6], [-4], [-12], [12], [-28], [10], [-8]], q:[[13], [-3]], qb:[[-9], [15]], phi:[[-4]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{6}$, ${ }M_{8}$, ${ }\phi_{1}^{2}$, ${ }M_{5}$, ${ }M_{1}$, ${ }M_{7}$, ${ }M_{4}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }X_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{6}^{2}$, ${ }M_{6}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{8}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}M_{8}$, ${ }M_{5}\phi_{1}^{2}$, ${ }X_{2}$, ${ }M_{5}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{1}M_{8}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{7}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{1}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{4}\phi_{1}^{2}$ ${}$ -1 t^2.198 + 2*t^2.342 + t^2.487 + t^2.928 + t^3.072 + t^3.513 + t^4.243 + t^4.388 + t^4.396 + 2*t^4.54 + 4*t^4.685 + 3*t^4.829 + t^4.973 + t^5.126 + 2*t^5.27 + 2*t^5.414 + t^5.559 + t^5.711 + 2*t^5.856 - t^6. + t^6.441 + t^6.586 + t^6.594 + t^6.73 + 2*t^6.738 + t^6.874 + 4*t^6.883 + 7*t^7.027 + 4*t^7.171 + t^7.315 + t^7.324 + t^7.46 + 2*t^7.468 + 3*t^7.612 + 3*t^7.757 + t^7.901 + t^7.909 + 2*t^8.054 + t^8.198 - 3*t^8.342 - 3*t^8.487 + t^8.639 + t^8.775 + t^8.784 + t^8.792 - t^8.928 + 2*t^8.936 - t^4.171/y - t^6.369/y - (2*t^6.513)/y + (2*t^7.54)/y + (2*t^7.685)/y + (4*t^7.829)/y + t^7.973/y + t^8.126/y + (3*t^8.27)/y + (3*t^8.414)/y + t^8.559/y - t^8.567/y - t^8.711/y - t^8.856/y - t^4.171*y - t^6.369*y - 2*t^6.513*y + 2*t^7.54*y + 2*t^7.685*y + 4*t^7.829*y + t^7.973*y + t^8.126*y + 3*t^8.27*y + 3*t^8.414*y + t^8.559*y - t^8.567*y - t^8.711*y - t^8.856*y t^2.198/g1^28 + (2*t^2.342)/g1^8 + g1^12*t^2.487 + t^2.928/g1^10 + g1^10*t^3.072 + t^3.513/g1^12 + g1^6*t^4.243 + g1^26*t^4.388 + t^4.396/g1^56 + (2*t^4.54)/g1^36 + (4*t^4.685)/g1^16 + 3*g1^4*t^4.829 + g1^24*t^4.973 + t^5.126/g1^38 + (2*t^5.27)/g1^18 + 2*g1^2*t^5.414 + g1^22*t^5.559 + t^5.711/g1^40 + (2*t^5.856)/g1^20 - t^6. + t^6.441/g1^22 + t^6.586/g1^2 + t^6.594/g1^84 + g1^18*t^6.73 + (2*t^6.738)/g1^64 + g1^38*t^6.874 + (4*t^6.883)/g1^44 + (7*t^7.027)/g1^24 + (4*t^7.171)/g1^4 + g1^16*t^7.315 + t^7.324/g1^66 + g1^36*t^7.46 + (2*t^7.468)/g1^46 + (3*t^7.612)/g1^26 + (3*t^7.757)/g1^6 + g1^14*t^7.901 + t^7.909/g1^68 + (2*t^8.054)/g1^48 + t^8.198/g1^28 - (3*t^8.342)/g1^8 - 3*g1^12*t^8.487 + t^8.639/g1^50 + g1^52*t^8.775 + t^8.784/g1^30 + t^8.792/g1^112 - t^8.928/g1^10 + (2*t^8.936)/g1^92 - t^4.171/(g1^4*y) - t^6.369/(g1^32*y) - (2*t^6.513)/(g1^12*y) + (2*t^7.54)/(g1^36*y) + (2*t^7.685)/(g1^16*y) + (4*g1^4*t^7.829)/y + (g1^24*t^7.973)/y + t^8.126/(g1^38*y) + (3*t^8.27)/(g1^18*y) + (3*g1^2*t^8.414)/y + (g1^22*t^8.559)/y - t^8.567/(g1^60*y) - t^8.711/(g1^40*y) - t^8.856/(g1^20*y) - (t^4.171*y)/g1^4 - (t^6.369*y)/g1^32 - (2*t^6.513*y)/g1^12 + (2*t^7.54*y)/g1^36 + (2*t^7.685*y)/g1^16 + 4*g1^4*t^7.829*y + g1^24*t^7.973*y + (t^8.126*y)/g1^38 + (3*t^8.27*y)/g1^18 + 3*g1^2*t^8.414*y + g1^22*t^8.559*y - (t^8.567*y)/g1^60 - (t^8.711*y)/g1^40 - (t^8.856*y)/g1^20


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2616 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ + ${ }M_{1}M_{7}$ + ${ }M_{2}X_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{3}X_{2}$ 0.5883 0.7268 0.8095 [X:[1.4118, 1.6078], M:[0.9804, 0.5882, 0.3922, 1.1765, 0.8235, 0.7451, 1.0196], q:[0.7255, 0.2941], qb:[0.8824, 0.5294], phi:[0.3922]] t^2.235 + t^2.353 + t^2.471 + t^2.941 + t^3.059 + t^3.529 + t^3.647 + t^4.235 + t^4.353 + t^4.471 + t^4.588 + 2*t^4.706 + 2*t^4.824 + t^4.941 + t^5.176 + t^5.294 + t^5.412 + t^5.529 + t^5.765 + 2*t^5.882 - t^4.176/y - t^4.176*y detail {a: 8161/13872, c: 5041/6936, X1: 24/17, X2: 82/51, M1: 50/51, M2: 10/17, M3: 20/51, M4: 20/17, M5: 14/17, M6: 38/51, M7: 52/51, q1: 37/51, q2: 5/17, qb1: 15/17, qb2: 9/17, phi1: 20/51}