Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47261 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_1^2$ + $ q_1\tilde{q}_1\tilde{q}_2^2$ + $ M_2q_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ 0.6626 0.8501 0.7794 [X:[], M:[0.8, 0.8, 0.8, 1.1], q:[0.75, 0.45], qb:[0.35, 0.45], phi:[0.5]] [X:[], M:[[0], [0], [0], [0]], q:[[0], [0]], qb:[[0], [0]], phi:[[0]]] 0 {a: 5301/8000, c: 6801/8000, M1: 4/5, M2: 4/5, M3: 4/5, M4: 11/10, q1: 3/4, q2: 9/20, qb1: 7/20, qb2: 9/20, phi1: 1/2}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_2$, $ M_3$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1^2$, $ M_4$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ M_1M_3$, $ M_2M_3$, $ M_3^2$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_1\phi_1^2$, $ M_2\phi_1^2$, $ M_3\phi_1^2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_1M_4$, $ M_2M_4$, $ M_3M_4$, $ M_2q_1\tilde{q}_1$, $ M_3q_1\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_4\tilde{q}_1\tilde{q}_2$ . -5 5*t^2.4 + t^3. + 2*t^3.3 + 2*t^3.9 + 3*t^4.2 + 15*t^4.8 + 5*t^5.4 + 8*t^5.7 - 5*t^6. + 8*t^6.3 + 13*t^6.6 - 2*t^6.9 + 34*t^7.2 - 2*t^7.5 + 10*t^7.8 + 22*t^8.1 - 20*t^8.4 + 18*t^8.7 - t^4.5/y - (3*t^6.9)/y + t^7.2/y + (9*t^7.8)/y + (3*t^8.1)/y + (5*t^8.4)/y + (10*t^8.7)/y - t^4.5*y - 3*t^6.9*y + t^7.2*y + 9*t^7.8*y + 3*t^8.1*y + 5*t^8.4*y + 10*t^8.7*y 5*t^2.4 + t^3. + 2*t^3.3 + 2*t^3.9 + 3*t^4.2 + 15*t^4.8 + 5*t^5.4 + 8*t^5.7 - 5*t^6. + 8*t^6.3 + 13*t^6.6 - 2*t^6.9 + 34*t^7.2 - 2*t^7.5 + 10*t^7.8 + 22*t^8.1 - 20*t^8.4 + 18*t^8.7 - t^4.5/y - (3*t^6.9)/y + t^7.2/y + (9*t^7.8)/y + (3*t^8.1)/y + (5*t^8.4)/y + (10*t^8.7)/y - t^4.5*y - 3*t^6.9*y + t^7.2*y + 9*t^7.8*y + 3*t^8.1*y + 5*t^8.4*y + 10*t^8.7*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46738 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_1^2$ + $ q_1\tilde{q}_1\tilde{q}_2^2$ + $ M_2q_1\tilde{q}_2$ + $ M_3q_1\tilde{q}_2$ 0.6717 0.8655 0.7761 [X:[], M:[0.8, 0.8, 0.8], q:[0.75, 0.45], qb:[0.35, 0.45], phi:[0.5]] 5*t^2.4 + t^2.7 + t^3. + t^3.3 + 2*t^3.9 + 3*t^4.2 + 15*t^4.8 + 5*t^5.1 + 6*t^5.4 + 4*t^5.7 - 4*t^6. - t^4.5/y - t^4.5*y detail {a: 4299/6400, c: 5539/6400, M1: 4/5, M2: 4/5, M3: 4/5, q1: 3/4, q2: 9/20, qb1: 7/20, qb2: 9/20, phi1: 1/2}