Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47249 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{4}M_{6}$ 0.6406 0.7956 0.8052 [M:[1.14, 0.7099, 0.86, 0.81, 0.7099, 1.19], q:[0.405, 0.455], qb:[0.8851, 0.735], phi:[0.38]] [M:[[-3, -3], [2, 4], [3, 3], [-6, -8], [-11, -13], [6, 8]], q:[[-3, -4], [6, 7]], qb:[[1, 0], [0, 1]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{5}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}\phi_{1}q_{1}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}M_{6}$, ${ }\phi_{1}^{3}q_{1}^{2}$, ${ }M_{5}\phi_{1}q_{1}q_{2}$, ${ }M_{6}\phi_{1}^{2}$ ${}\phi_{1}^{3}q_{1}q_{2}$ -1 2*t^2.13 + t^2.28 + t^2.58 + t^3.42 + 2*t^3.57 + t^3.72 + t^4.02 + 3*t^4.26 + 2*t^4.41 + t^4.56 + 2*t^4.71 + 2*t^4.86 + t^5.16 + 2*t^5.55 + 4*t^5.7 + 2*t^5.85 - t^6. + 2*t^6.15 + t^6.3 + 4*t^6.389 + 3*t^6.54 + t^6.6 + 2*t^6.69 + 4*t^6.84 + 4*t^6.99 + 3*t^7.14 + 3*t^7.679 + t^7.74 + 6*t^7.83 + 3*t^7.98 + t^8.041 - 2*t^8.13 + 2*t^8.28 + 5*t^8.519 - 2*t^8.58 + 4*t^8.669 + 3*t^8.819 + t^8.88 + 6*t^8.97 - t^4.14/y - (2*t^6.27)/y - t^6.42/y + t^7.26/y + (2*t^7.41)/y + (2*t^7.71)/y + (2*t^7.86)/y + (2*t^8.01)/y - (3*t^8.4)/y + (4*t^8.7)/y + (4*t^8.85)/y - t^4.14*y - 2*t^6.27*y - t^6.42*y + t^7.26*y + 2*t^7.41*y + 2*t^7.71*y + 2*t^7.86*y + 2*t^8.01*y - 3*t^8.4*y + 4*t^8.7*y + 4*t^8.85*y t^2.13/(g1^11*g2^13) + g1^2*g2^4*t^2.13 + t^2.28/(g1^2*g2^2) + g1^3*g2^3*t^2.58 + t^3.42/(g1^3*g2^3) + t^3.57/(g1^7*g2^9) + g1^6*g2^8*t^3.57 + g1^2*g2^2*t^3.72 + g1^7*g2^7*t^4.02 + t^4.26/(g1^22*g2^26) + t^4.26/(g1^9*g2^9) + g1^4*g2^8*t^4.26 + t^4.41/(g1^13*g2^15) + g2^2*t^4.41 + t^4.56/(g1^4*g2^4) + t^4.71/(g1^8*g2^10) + g1^5*g2^7*t^4.71 + 2*g1*g2*t^4.86 + g1^6*g2^6*t^5.16 + t^5.55/(g1^14*g2^16) + (g2*t^5.55)/g1 + t^5.7/(g1^18*g2^22) + (2*t^5.7)/(g1^5*g2^5) + g1^8*g2^12*t^5.7 + t^5.85/(g1^9*g2^11) + g1^4*g2^6*t^5.85 - t^6. + t^6.15/(g1^4*g2^6) + g1^9*g2^11*t^6.15 + g1^5*g2^5*t^6.3 + t^6.389/(g1^33*g2^39) + t^6.389/(g1^20*g2^22) + t^6.389/(g1^7*g2^5) + g1^6*g2^12*t^6.389 + t^6.54/(g1^24*g2^28) + t^6.54/(g1^11*g2^11) + g1^2*g2^6*t^6.54 + g1^10*g2^10*t^6.6 + t^6.69/g1^2 + t^6.69/(g1^15*g2^17) + t^6.84/(g1^19*g2^23) + (2*t^6.84)/(g1^6*g2^6) + g1^7*g2^11*t^6.84 + (2*t^6.99)/(g1^10*g2^12) + 2*g1^3*g2^5*t^6.99 + t^7.14/(g1^14*g2^18) + t^7.14/(g1*g2) + g1^12*g2^16*t^7.14 + t^7.679/(g1^25*g2^29) + t^7.679/(g1^12*g2^12) + g1*g2^5*t^7.679 + g1^9*g2^9*t^7.74 + t^7.83/(g1^29*g2^35) + (2*t^7.83)/(g1^16*g2^18) + (2*t^7.83)/(g1^3*g2) + g1^10*g2^16*t^7.83 + t^7.98/(g1^20*g2^24) + t^7.98/(g1^7*g2^7) + g1^6*g2^10*t^7.98 + g1^14*g2^14*t^8.041 - t^8.13/(g1^11*g2^13) - g1^2*g2^4*t^8.13 + t^8.28/(g1^15*g2^19) + g1^11*g2^15*t^8.28 + t^8.519/(g1^44*g2^52) + t^8.519/(g1^31*g2^35) + t^8.519/(g1^18*g2^18) + t^8.519/(g1^5*g2) + g1^8*g2^16*t^8.519 - 2*g1^3*g2^3*t^8.58 + t^8.669/(g1^35*g2^41) + t^8.669/(g1^22*g2^24) + t^8.669/(g1^9*g2^7) + g1^4*g2^10*t^8.669 + t^8.819/(g1^26*g2^30) + t^8.819/(g1^13*g2^13) + g2^4*t^8.819 + g1^8*g2^8*t^8.88 + t^8.97/(g1^30*g2^36) + (2*t^8.97)/(g1^17*g2^19) + (2*t^8.97)/(g1^4*g2^2) + g1^9*g2^15*t^8.97 - t^4.14/(g1*g2*y) - t^6.27/(g1^12*g2^14*y) - (g1*g2^3*t^6.27)/y - t^6.42/(g1^3*g2^3*y) + t^7.26/(g1^9*g2^9*y) + t^7.41/(g1^13*g2^15*y) + (g2^2*t^7.41)/y + t^7.71/(g1^8*g2^10*y) + (g1^5*g2^7*t^7.71)/y + (2*g1*g2*t^7.86)/y + t^8.01/(g1^3*g2^5*y) + (g1^10*g2^12*t^8.01)/y - t^8.4/(g1^23*g2^27*y) - t^8.4/(g1^10*g2^10*y) - (g1^3*g2^7*t^8.4)/y + t^8.7/(g1^18*g2^22*y) + (2*t^8.7)/(g1^5*g2^5*y) + (g1^8*g2^12*t^8.7)/y + (2*t^8.85)/(g1^9*g2^11*y) + (2*g1^4*g2^6*t^8.85)/y - (t^4.14*y)/(g1*g2) - (t^6.27*y)/(g1^12*g2^14) - g1*g2^3*t^6.27*y - (t^6.42*y)/(g1^3*g2^3) + (t^7.26*y)/(g1^9*g2^9) + (t^7.41*y)/(g1^13*g2^15) + g2^2*t^7.41*y + (t^7.71*y)/(g1^8*g2^10) + g1^5*g2^7*t^7.71*y + 2*g1*g2*t^7.86*y + (t^8.01*y)/(g1^3*g2^5) + g1^10*g2^12*t^8.01*y - (t^8.4*y)/(g1^23*g2^27) - (t^8.4*y)/(g1^10*g2^10) - g1^3*g2^7*t^8.4*y + (t^8.7*y)/(g1^18*g2^22) + (2*t^8.7*y)/(g1^5*g2^5) + g1^8*g2^12*t^8.7*y + (2*t^8.85*y)/(g1^9*g2^11) + 2*g1^4*g2^6*t^8.85*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
50757 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{4}M_{6}$ + ${ }M_{1}M_{5}$ 0.6332 0.7848 0.8069 [M:[1.1817, 0.7266, 0.8183, 0.8489, 0.8183, 1.1511], q:[0.4245, 0.3939], qb:[0.8489, 0.7572], phi:[0.3939]] t^2.18 + t^2.363 + 2*t^2.455 + t^3.453 + t^3.545 + t^3.637 + 2*t^3.728 + t^4.36 + t^4.543 + 2*t^4.635 + t^4.727 + 3*t^4.818 + 3*t^4.91 + t^5.633 + t^5.725 + t^5.817 + 3*t^5.908 - t^4.182/y - t^4.182*y detail
55576 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}q_{1}q_{2}$ 0.6593 0.8299 0.7944 [M:[1.135, 0.7026, 0.865, 0.8108, 0.7026, 1.1892, 0.7567], q:[0.4054, 0.4595], qb:[0.892, 0.7296], phi:[0.3783]] 2*t^2.108 + 2*t^2.27 + t^2.595 + t^3.405 + 2*t^3.568 + t^4.055 + 3*t^4.215 + 4*t^4.378 + 3*t^4.54 + 2*t^4.703 + 3*t^4.865 + t^5.19 + 2*t^5.513 + 5*t^5.675 + 2*t^5.838 - 2*t^6. - t^4.135/y - t^4.135*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46786 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}q_{2}^{2}$ 0.6572 0.8255 0.7962 [M:[1.1417, 0.7369, 0.8583, 0.7854, 0.6882], q:[0.3927, 0.4656], qb:[0.8704, 0.749], phi:[0.3806]] t^2.065 + t^2.211 + t^2.283 + t^2.356 + t^2.575 + t^3.425 + t^3.498 + t^3.717 + t^4.008 + t^4.129 + t^4.275 + t^4.348 + 2*t^4.421 + t^4.494 + 2*t^4.567 + 2*t^4.64 + t^4.712 + t^4.786 + 2*t^4.858 + t^4.931 + t^5.15 + t^5.49 + t^5.562 + t^5.636 + t^5.708 + 2*t^5.781 + t^5.854 - t^6. - t^4.142/y - t^4.142*y detail