Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47246 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_3^2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_1M_4$ + $ M_5\phi_1^2$ 0.6053 0.7761 0.7799 [X:[], M:[0.7429, 0.7334, 1.0, 1.2571, 1.0095], q:[0.7524, 0.5047], qb:[0.5142, 0.2476], phi:[0.4953]] [X:[], M:[[3], [7], [0], [-3], [-4]], q:[[-1], [-2]], qb:[[-6], [1]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_3$, $ M_5$, $ q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ M_4$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_2q_2\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2$, $ q_2^2\tilde{q}_2^2$, $ \phi_1q_2\tilde{q}_1$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ \phi_1\tilde{q}_1^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_2\phi_1\tilde{q}_2^2$, $ M_2M_5$, $ \phi_1q_2\tilde{q}_2^3$, $ \phi_1q_1q_2$, $ M_2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2^3$, $ \phi_1q_1\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_2\phi_1q_2\tilde{q}_2$, $ \phi_1^2\tilde{q}_2^4$, $ M_2M_4$, $ M_2\phi_1\tilde{q}_1\tilde{q}_2$, $ M_3\phi_1\tilde{q}_2^2$ $M_5\phi_1\tilde{q}_2^2$, $ \phi_1q_2^2\tilde{q}_2^2$ -1 t^2.2 + t^2.26 + t^2.29 + t^2.97 + t^3. + t^3.03 + t^3.06 + t^3.74 + 2*t^3.77 + t^4.4 + t^4.46 + t^4.49 + 2*t^4.51 + 2*t^4.54 + 2*t^4.57 + t^5.17 + t^5.23 + 3*t^5.26 + 2*t^5.29 + 2*t^5.31 + t^5.34 + 2*t^5.94 + t^5.97 - t^6. + 3*t^6.03 + 3*t^6.06 + t^6.09 + t^6.11 + t^6.6 + t^6.66 + t^6.71 + 2*t^6.74 + 3*t^6.77 + 3*t^6.8 + 4*t^6.83 + 2*t^6.86 + t^7.37 + t^7.43 + t^7.46 + 2*t^7.51 + 6*t^7.54 + 4*t^7.57 + 3*t^7.6 + 2*t^7.63 + 2*t^8.14 - 2*t^8.2 + t^8.23 - t^8.26 + t^8.29 + 5*t^8.31 + 5*t^8.34 + 2*t^8.37 + t^8.4 + t^8.8 + t^8.86 + 3*t^8.91 + t^8.94 - 2*t^8.97 - t^4.49/y - t^6.69/y + t^7.46/y + t^7.49/y + t^7.54/y + t^8.17/y + t^8.2/y + (2*t^8.23)/y + (3*t^8.26)/y + (3*t^8.29)/y + (2*t^8.31)/y + t^8.34/y - t^8.89/y + t^8.94/y + (3*t^8.97)/y - t^4.49*y - t^6.69*y + t^7.46*y + t^7.49*y + t^7.54*y + t^8.17*y + t^8.2*y + 2*t^8.23*y + 3*t^8.26*y + 3*t^8.29*y + 2*t^8.31*y + t^8.34*y - t^8.89*y + t^8.94*y + 3*t^8.97*y g1^7*t^2.2 + t^2.26/g1 + t^2.29/g1^5 + g1^4*t^2.97 + t^3. + t^3.03/g1^4 + t^3.06/g1^8 + g1*t^3.74 + (2*t^3.77)/g1^3 + g1^14*t^4.4 + g1^6*t^4.46 + g1^2*t^4.49 + (2*t^4.51)/g1^2 + (2*t^4.54)/g1^6 + (2*t^4.57)/g1^10 + g1^11*t^5.17 + g1^3*t^5.23 + (3*t^5.26)/g1 + (2*t^5.29)/g1^5 + (2*t^5.31)/g1^9 + t^5.34/g1^13 + 2*g1^8*t^5.94 + g1^4*t^5.97 - t^6. + (3*t^6.03)/g1^4 + (3*t^6.06)/g1^8 + t^6.09/g1^12 + t^6.11/g1^16 + g1^21*t^6.6 + g1^13*t^6.66 + g1^5*t^6.71 + 2*g1*t^6.74 + (3*t^6.77)/g1^3 + (3*t^6.8)/g1^7 + (4*t^6.83)/g1^11 + (2*t^6.86)/g1^15 + g1^18*t^7.37 + g1^10*t^7.43 + g1^6*t^7.46 + (2*t^7.51)/g1^2 + (6*t^7.54)/g1^6 + (4*t^7.57)/g1^10 + (3*t^7.6)/g1^14 + (2*t^7.63)/g1^18 + 2*g1^15*t^8.14 - 2*g1^7*t^8.2 + g1^3*t^8.23 - t^8.26/g1 + t^8.29/g1^5 + (5*t^8.31)/g1^9 + (5*t^8.34)/g1^13 + (2*t^8.37)/g1^17 + t^8.4/g1^21 + g1^28*t^8.8 + g1^20*t^8.86 + 3*g1^12*t^8.91 + g1^8*t^8.94 - 2*g1^4*t^8.97 - (g1^2*t^4.49)/y - (g1^9*t^6.69)/y + (g1^6*t^7.46)/y + (g1^2*t^7.49)/y + t^7.54/(g1^6*y) + (g1^11*t^8.17)/y + (g1^7*t^8.2)/y + (2*g1^3*t^8.23)/y + (3*t^8.26)/(g1*y) + (3*t^8.29)/(g1^5*y) + (2*t^8.31)/(g1^9*y) + t^8.34/(g1^13*y) - (g1^16*t^8.89)/y + (g1^8*t^8.94)/y + (3*g1^4*t^8.97)/y - g1^2*t^4.49*y - g1^9*t^6.69*y + g1^6*t^7.46*y + g1^2*t^7.49*y + (t^7.54*y)/g1^6 + g1^11*t^8.17*y + g1^7*t^8.2*y + 2*g1^3*t^8.23*y + (3*t^8.26*y)/g1 + (3*t^8.29*y)/g1^5 + (2*t^8.31*y)/g1^9 + (t^8.34*y)/g1^13 - g1^16*t^8.89*y + g1^8*t^8.94*y + 3*g1^4*t^8.97*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46763 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_3^2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_1M_4$ 0.6068 0.7776 0.7804 [X:[], M:[0.7318, 0.7075, 1.0, 1.2682], q:[0.7561, 0.5122], qb:[0.5365, 0.2439], phi:[0.4878]] t^2.12 + t^2.27 + t^2.34 + 2*t^2.93 + t^3. + t^3.15 + t^3.73 + 2*t^3.8 + t^4.24 + t^4.39 + t^4.46 + 2*t^4.54 + 2*t^4.61 + 2*t^4.68 + 2*t^5.05 + t^5.2 + 4*t^5.27 + t^5.34 + t^5.41 + t^5.49 + 4*t^5.85 + 2*t^5.93 - 2*t^6. - t^4.46/y - t^4.46*y detail