Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47238 SU2adj1nf2 $M_1\phi_1^2$ + $ M_2q_1q_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_4^2$ + $ M_5q_2\tilde{q}_2$ + $ M_6\tilde{q}_1\tilde{q}_2$ 0.7108 0.8736 0.8137 [X:[], M:[1.2082, 0.8856, 0.8856, 1.0, 0.6979, 0.6979], q:[0.6144, 0.5], qb:[0.5, 0.8021], phi:[0.3959]] [X:[], M:[[0, 4], [1, -7], [-1, -7], [0, 0], [1, -1], [-1, -1]], q:[[0, 7], [-1, 0]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_5$, $ M_3$, $ M_2$, $ M_4$, $ M_1$, $ M_5M_6$, $ \phi_1q_2\tilde{q}_1$, $ M_6^2$, $ \phi_1q_2^2$, $ M_5^2$, $ \phi_1\tilde{q}_1^2$, $ q_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_5$, $ M_2M_6$, $ M_3M_6$, $ M_2M_5$, $ \phi_1q_1^2$, $ M_4M_6$, $ M_4M_5$, $ M_2M_3$, $ M_3^2$, $ M_2^2$, $ M_1M_6$, $ M_1M_5$ . -4 2*t^2.09 + 2*t^2.66 + t^3. + t^3.62 + 6*t^4.19 + t^4.25 + 2*t^4.53 + 4*t^4.75 + t^4.87 + 2*t^5.09 + 3*t^5.31 + 2*t^5.72 - 4*t^6. + 10*t^6.28 - t^6.56 + 4*t^6.62 + 10*t^6.84 + 2*t^6.97 + 6*t^7.19 + t^7.25 + 6*t^7.41 + 3*t^7.81 + t^7.87 + 4*t^7.97 - 10*t^8.09 + 19*t^8.38 - 2*t^8.44 + t^8.5 - 10*t^8.66 + 8*t^8.72 + 16*t^8.94 - t^4.19/y - (2*t^6.28)/y - (2*t^6.84)/y + t^7.19/y + (2*t^7.53)/y + (4*t^7.75)/y + (4*t^8.09)/y + t^8.31/y - (3*t^8.38)/y + (2*t^8.66)/y + (2*t^8.72)/y - (4*t^8.94)/y - t^4.19*y - 2*t^6.28*y - 2*t^6.84*y + t^7.19*y + 2*t^7.53*y + 4*t^7.75*y + 4*t^8.09*y + t^8.31*y - 3*t^8.38*y + 2*t^8.66*y + 2*t^8.72*y - 4*t^8.94*y t^2.09/(g1*g2) + (g1*t^2.09)/g2 + t^2.66/(g1*g2^7) + (g1*t^2.66)/g2^7 + t^3. + g2^4*t^3.62 + (2*t^4.19)/g2^2 + (2*t^4.19)/(g1^2*g2^2) + (2*g1^2*t^4.19)/g2^2 + g2^8*t^4.25 + (g2^5*t^4.53)/g1 + g1*g2^5*t^4.53 + (2*t^4.75)/g2^8 + t^4.75/(g1^2*g2^8) + (g1^2*t^4.75)/g2^8 + g2^12*t^4.87 + t^5.09/(g1*g2) + (g1*t^5.09)/g2 + t^5.31/g2^14 + t^5.31/(g1^2*g2^14) + (g1^2*t^5.31)/g2^14 + (g2^3*t^5.72)/g1 + g1*g2^3*t^5.72 - 2*t^6. - t^6./g1^2 - g1^2*t^6. + (2*t^6.28)/(g1^3*g2^3) + (3*t^6.28)/(g1*g2^3) + (3*g1*t^6.28)/g2^3 + (2*g1^3*t^6.28)/g2^3 - t^6.56/g2^6 + 2*g2^4*t^6.62 + (g2^4*t^6.62)/g1^2 + g1^2*g2^4*t^6.62 + (2*t^6.84)/(g1^3*g2^9) + (3*t^6.84)/(g1*g2^9) + (3*g1*t^6.84)/g2^9 + (2*g1^3*t^6.84)/g2^9 + (g2^11*t^6.97)/g1 + g1*g2^11*t^6.97 + (2*t^7.19)/g2^2 + (2*t^7.19)/(g1^2*g2^2) + (2*g1^2*t^7.19)/g2^2 + g2^8*t^7.25 + t^7.41/(g1^3*g2^15) + (2*t^7.41)/(g1*g2^15) + (2*g1*t^7.41)/g2^15 + (g1^3*t^7.41)/g2^15 + g2^2*t^7.81 + (g2^2*t^7.81)/g1^2 + g1^2*g2^2*t^7.81 + g2^12*t^7.87 + t^7.97/(g1^3*g2^21) + t^7.97/(g1*g2^21) + (g1*t^7.97)/g2^21 + (g1^3*t^7.97)/g2^21 - t^8.09/(g1^3*g2) - (4*t^8.09)/(g1*g2) - (4*g1*t^8.09)/g2 - (g1^3*t^8.09)/g2 + (5*t^8.38)/g2^4 + (3*t^8.38)/(g1^4*g2^4) + (4*t^8.38)/(g1^2*g2^4) + (4*g1^2*t^8.38)/g2^4 + (3*g1^4*t^8.38)/g2^4 - 2*g2^6*t^8.44 + g2^16*t^8.5 - t^8.66/(g1^3*g2^7) - (4*t^8.66)/(g1*g2^7) - (4*g1*t^8.66)/g2^7 - (g1^3*t^8.66)/g2^7 + (2*g2^3*t^8.72)/g1^3 + (2*g2^3*t^8.72)/g1 + 2*g1*g2^3*t^8.72 + 2*g1^3*g2^3*t^8.72 + (4*t^8.94)/g2^10 + (2*t^8.94)/(g1^4*g2^10) + (4*t^8.94)/(g1^2*g2^10) + (4*g1^2*t^8.94)/g2^10 + (2*g1^4*t^8.94)/g2^10 - t^4.19/(g2^2*y) - t^6.28/(g1*g2^3*y) - (g1*t^6.28)/(g2^3*y) - t^6.84/(g1*g2^9*y) - (g1*t^6.84)/(g2^9*y) + t^7.19/(g2^2*y) + (g2^5*t^7.53)/(g1*y) + (g1*g2^5*t^7.53)/y + (2*t^7.75)/(g2^8*y) + t^7.75/(g1^2*g2^8*y) + (g1^2*t^7.75)/(g2^8*y) + (2*t^8.09)/(g1*g2*y) + (2*g1*t^8.09)/(g2*y) + t^8.31/(g2^14*y) - t^8.38/(g2^4*y) - t^8.38/(g1^2*g2^4*y) - (g1^2*t^8.38)/(g2^4*y) + t^8.66/(g1*g2^7*y) + (g1*t^8.66)/(g2^7*y) + (g2^3*t^8.72)/(g1*y) + (g1*g2^3*t^8.72)/y - (2*t^8.94)/(g2^10*y) - t^8.94/(g1^2*g2^10*y) - (g1^2*t^8.94)/(g2^10*y) - (t^4.19*y)/g2^2 - (t^6.28*y)/(g1*g2^3) - (g1*t^6.28*y)/g2^3 - (t^6.84*y)/(g1*g2^9) - (g1*t^6.84*y)/g2^9 + (t^7.19*y)/g2^2 + (g2^5*t^7.53*y)/g1 + g1*g2^5*t^7.53*y + (2*t^7.75*y)/g2^8 + (t^7.75*y)/(g1^2*g2^8) + (g1^2*t^7.75*y)/g2^8 + (2*t^8.09*y)/(g1*g2) + (2*g1*t^8.09*y)/g2 + (t^8.31*y)/g2^14 - (t^8.38*y)/g2^4 - (t^8.38*y)/(g1^2*g2^4) - (g1^2*t^8.38*y)/g2^4 + (t^8.66*y)/(g1*g2^7) + (g1*t^8.66*y)/g2^7 + (g2^3*t^8.72*y)/g1 + g1*g2^3*t^8.72*y - (2*t^8.94*y)/g2^10 - (t^8.94*y)/(g1^2*g2^10) - (g1^2*t^8.94*y)/g2^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46538 SU2adj1nf2 $M_1\phi_1^2$ + $ M_2q_1q_2$ + $ M_3q_1\tilde{q}_1$ + $ M_4q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_4^2$ + $ M_5q_2\tilde{q}_2$ 0.6903 0.8344 0.8273 [X:[], M:[1.2074, 0.8831, 0.891, 1.0, 0.6942], q:[0.6129, 0.504], qb:[0.496, 0.8018], phi:[0.3963]] t^2.08 + t^2.65 + t^2.67 + t^3. + t^3.62 + t^3.89 + 2*t^4.17 + t^4.19 + t^4.21 + t^4.24 + t^4.52 + t^4.54 + t^4.73 + t^4.76 + t^4.87 + t^5.08 + t^5.3 + t^5.32 + t^5.35 + t^5.7 - 2*t^6. - t^4.19/y - t^4.19*y detail