Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
472 | SU2adj1nf2 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}M_{5}$ | 0.5753 | 0.747 | 0.7701 | [M:[1.1393, 0.76, 0.6827, 0.9613, 0.8607], q:[0.5565, 1.0131], qb:[0.3042, 0.4048], phi:[0.4303]] | [M:[[2, 2], [1, -5], [-9, -3], [-5, 1], [-2, -2]], q:[[-5, -2], [6, 3]], qb:[[3, 0], [0, 3]], phi:[[-1, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$, ${ }q_{1}q_{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{5}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | ${}M_{5}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$ | -2 | t^2.048 + t^2.127 + t^2.28 + 2*t^2.582 + 2*t^2.884 + t^3.418 + t^4.096 + t^4.175 + 2*t^4.254 + t^4.328 + t^4.407 + t^4.56 + 2*t^4.63 + 3*t^4.709 + 2*t^4.862 + 2*t^4.932 + 2*t^5.011 + 4*t^5.164 + 4*t^5.466 + t^5.545 + 3*t^5.768 - 2*t^6. + t^6.144 + t^6.223 + 2*t^6.302 + t^6.376 + 2*t^6.381 + t^6.608 + 2*t^6.678 + t^6.687 + 2*t^6.757 + 2*t^6.836 + t^6.84 + 2*t^6.91 + 2*t^6.98 + 2*t^6.989 + 2*t^7.059 + 3*t^7.138 + 2*t^7.142 + 4*t^7.212 + 3*t^7.291 - t^7.37 + 4*t^7.444 + 4*t^7.514 + 4*t^7.593 + t^7.672 + 5*t^7.746 + 3*t^7.816 - 2*t^7.825 + 3*t^7.895 + 3*t^8.048 - 4*t^8.127 + t^8.193 + t^8.271 - 4*t^8.28 + 6*t^8.35 + t^8.424 + t^8.429 + 3*t^8.508 - 6*t^8.582 + 4*t^8.652 + t^8.656 - t^8.661 + 2*t^8.726 + 2*t^8.805 - 6*t^8.884 + t^8.888 + 2*t^8.958 + 2*t^8.963 + t^8.967 - t^4.291/y - t^6.339/y - t^6.571/y - t^6.873/y + t^7.328/y + (2*t^7.407)/y + (2*t^7.63)/y + (3*t^7.709)/y + (2*t^7.862)/y + (2*t^7.932)/y + (3*t^8.011)/y + (3*t^8.164)/y + t^8.243/y - t^8.387/y + (5*t^8.466)/y + t^8.545/y - t^8.619/y + t^8.698/y + t^8.768/y - t^8.851/y - t^8.921/y - t^4.291*y - t^6.339*y - t^6.571*y - t^6.873*y + t^7.328*y + 2*t^7.407*y + 2*t^7.63*y + 3*t^7.709*y + 2*t^7.862*y + 2*t^7.932*y + 3*t^8.011*y + 3*t^8.164*y + t^8.243*y - t^8.387*y + 5*t^8.466*y + t^8.545*y - t^8.619*y + t^8.698*y + t^8.768*y - t^8.851*y - t^8.921*y | t^2.048/(g1^9*g2^3) + g1^3*g2^3*t^2.127 + (g1*t^2.28)/g2^5 + (2*t^2.582)/(g1^2*g2^2) + (2*g2*t^2.884)/g1^5 + g1^2*g2^2*t^3.418 + t^4.096/(g1^18*g2^6) + t^4.175/g1^6 + 2*g1^6*g2^6*t^4.254 + t^4.328/(g1^8*g2^8) + (g1^4*t^4.407)/g2^2 + (g1^2*t^4.56)/g2^10 + (2*t^4.63)/(g1^11*g2^5) + 3*g1*g2*t^4.709 + (2*t^4.862)/(g1*g2^7) + (2*t^4.932)/(g1^14*g2^2) + (2*g2^4*t^5.011)/g1^2 + (4*t^5.164)/(g1^4*g2^4) + (4*t^5.466)/(g1^7*g2) + g1^5*g2^5*t^5.545 + (3*g2^2*t^5.768)/g1^10 - 2*t^6. + t^6.144/(g1^27*g2^9) + t^6.223/(g1^15*g2^3) + (2*g2^3*t^6.302)/g1^3 + t^6.376/(g1^17*g2^11) + 2*g1^9*g2^9*t^6.381 + t^6.608/(g1^7*g2^13) + (2*t^6.678)/(g1^20*g2^8) + (g1^5*t^6.687)/g2^7 + (2*t^6.757)/(g1^8*g2^2) + 2*g1^4*g2^4*t^6.836 + (g1^3*t^6.84)/g2^15 + (2*t^6.91)/(g1^10*g2^10) + (2*t^6.98)/(g1^23*g2^5) + (2*g1^2*t^6.989)/g2^4 + (2*g2*t^7.059)/g1^11 + 3*g1*g2^7*t^7.138 + (2*t^7.142)/g2^12 + (4*t^7.212)/(g1^13*g2^7) + (3*t^7.291)/(g1*g2) - g1^11*g2^5*t^7.37 + (4*t^7.444)/(g1^3*g2^9) + (4*t^7.514)/(g1^16*g2^4) + (4*g2^2*t^7.593)/g1^4 + g1^8*g2^8*t^7.672 + (5*t^7.746)/(g1^6*g2^6) + (3*t^7.816)/(g1^19*g2) - 2*g1^6*t^7.825 + (3*g2^5*t^7.895)/g1^7 + (3*t^8.048)/(g1^9*g2^3) - 4*g1^3*g2^3*t^8.127 + t^8.193/(g1^36*g2^12) + t^8.271/(g1^24*g2^6) - (4*g1*t^8.28)/g2^5 + (6*t^8.35)/g1^12 + t^8.424/(g1^26*g2^14) + g2^6*t^8.429 + 3*g1^12*g2^12*t^8.508 - (6*t^8.582)/(g1^2*g2^2) + (4*g2^3*t^8.652)/g1^15 + t^8.656/(g1^16*g2^16) - g1^10*g2^4*t^8.661 + (2*t^8.726)/(g1^29*g2^11) + (2*t^8.805)/(g1^17*g2^5) - (6*g2*t^8.884)/g1^5 + t^8.888/(g1^6*g2^18) + (2*t^8.958)/(g1^19*g2^13) + 2*g1^7*g2^7*t^8.963 + (g1^6*t^8.967)/g2^12 - t^4.291/(g1*g2*y) - t^6.339/(g1^10*g2^4*y) - t^6.571/(g2^6*y) - t^6.873/(g1^3*g2^3*y) + t^7.328/(g1^8*g2^8*y) + (2*g1^4*t^7.407)/(g2^2*y) + (2*t^7.63)/(g1^11*g2^5*y) + (3*g1*g2*t^7.709)/y + (2*t^7.862)/(g1*g2^7*y) + (2*t^7.932)/(g1^14*g2^2*y) + (3*g2^4*t^8.011)/(g1^2*y) + (3*t^8.164)/(g1^4*g2^4*y) + (g1^8*g2^2*t^8.243)/y - t^8.387/(g1^19*g2^7*y) + (5*t^8.466)/(g1^7*g2*y) + (g1^5*g2^5*t^8.545)/y - t^8.619/(g1^9*g2^9*y) + (g1^3*t^8.698)/(g2^3*y) + (g2^2*t^8.768)/(g1^10*y) - (g1*t^8.851)/(g2^11*y) - t^8.921/(g1^12*g2^6*y) - (t^4.291*y)/(g1*g2) - (t^6.339*y)/(g1^10*g2^4) - (t^6.571*y)/g2^6 - (t^6.873*y)/(g1^3*g2^3) + (t^7.328*y)/(g1^8*g2^8) + (2*g1^4*t^7.407*y)/g2^2 + (2*t^7.63*y)/(g1^11*g2^5) + 3*g1*g2*t^7.709*y + (2*t^7.862*y)/(g1*g2^7) + (2*t^7.932*y)/(g1^14*g2^2) + (3*g2^4*t^8.011*y)/g1^2 + (3*t^8.164*y)/(g1^4*g2^4) + g1^8*g2^2*t^8.243*y - (t^8.387*y)/(g1^19*g2^7) + (5*t^8.466*y)/(g1^7*g2) + g1^5*g2^5*t^8.545*y - (t^8.619*y)/(g1^9*g2^9) + (g1^3*t^8.698*y)/g2^3 + (g2^2*t^8.768*y)/g1^10 - (g1*t^8.851*y)/g2^11 - (t^8.921*y)/(g1^12*g2^6) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
300 | SU2adj1nf2 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$ | 0.5633 | 0.7261 | 0.7758 | [M:[1.1313, 0.7766, 0.698, 0.9607], q:[0.5662, 0.9995], qb:[0.3025, 0.3945], phi:[0.4343]] | t^2.091 + t^2.094 + t^2.33 + t^2.606 + 2*t^2.882 + 2*t^3.394 + 2*t^4.182 + t^4.185 + t^4.188 + t^4.421 + t^4.424 + t^4.66 + 2*t^4.697 + t^4.7 + t^4.936 + 2*t^4.973 + 2*t^4.976 + 2*t^5.212 + 2*t^5.485 + 3*t^5.488 + t^5.724 + 3*t^5.764 - 2*t^6. - t^4.303/y - t^4.303*y | detail |