Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47094 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{2}M_{5}$ 0.6089 0.7794 0.7812 [M:[0.6737, 1.0653, 0.9347, 0.6737, 0.9347], q:[0.3316, 0.9948], qb:[0.6031, 0.4621], phi:[0.4021]] [M:[[-20], [4], [-4], [-20], [-4]], q:[[5], [15]], qb:[[-9], [13]], phi:[[-6]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{5}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{4}$, ${ }M_{1}M_{5}$, ${ }M_{4}M_{5}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}^{3}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{5}^{2}$, ${ }\phi_{1}^{3}q_{1}^{2}$, ${ }M_{4}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$ ${}M_{5}\phi_{1}q_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ 0 2*t^2.021 + t^2.381 + t^2.413 + 2*t^2.804 + t^3.196 + t^3.587 + 3*t^4.042 + t^4.371 + 2*t^4.402 + 2*t^4.434 + t^4.762 + 2*t^4.794 + 5*t^4.825 + 2*t^5.185 + 3*t^5.217 + t^5.577 + 4*t^5.608 + t^5.969 + 4*t^6.063 + 2*t^6.392 + 2*t^6.423 + 3*t^6.455 + t^6.752 + t^6.783 + 2*t^6.815 + 8*t^6.846 + t^7.143 + 2*t^7.175 + 4*t^7.206 + 6*t^7.238 + t^7.566 + 2*t^7.598 + 8*t^7.629 + t^7.958 + 2*t^7.99 + 5*t^8.084 + t^8.35 - t^8.381 + 3*t^8.413 + 2*t^8.444 + 4*t^8.476 + t^8.741 - 4*t^8.804 + 2*t^8.836 + 11*t^8.867 - t^4.206/y - (2*t^6.227)/y - t^6.619/y - t^7.01/y + t^7.042/y + (3*t^7.402)/y + (2*t^7.434)/y + (2*t^7.794)/y + (4*t^7.825)/y + (4*t^8.185)/y + (4*t^8.217)/y - (3*t^8.248)/y + t^8.577/y + (4*t^8.608)/y - (2*t^8.64)/y + t^8.969/y - t^4.206*y - 2*t^6.227*y - t^6.619*y - t^7.01*y + t^7.042*y + 3*t^7.402*y + 2*t^7.434*y + 2*t^7.794*y + 4*t^7.825*y + 4*t^8.185*y + 4*t^8.217*y - 3*t^8.248*y + t^8.577*y + 4*t^8.608*y - 2*t^8.64*y + t^8.969*y (2*t^2.021)/g1^20 + g1^18*t^2.381 + t^2.413/g1^12 + (2*t^2.804)/g1^4 + g1^4*t^3.196 + g1^12*t^3.587 + (3*t^4.042)/g1^40 + g1^28*t^4.371 + (2*t^4.402)/g1^2 + (2*t^4.434)/g1^32 + g1^36*t^4.762 + 2*g1^6*t^4.794 + (5*t^4.825)/g1^24 + 2*g1^14*t^5.185 + (3*t^5.217)/g1^16 + g1^22*t^5.577 + (4*t^5.608)/g1^8 + g1^30*t^5.969 + (4*t^6.063)/g1^60 + 2*g1^8*t^6.392 + (2*t^6.423)/g1^22 + (3*t^6.455)/g1^52 + g1^46*t^6.752 + g1^16*t^6.783 + (2*t^6.815)/g1^14 + (8*t^6.846)/g1^44 + g1^54*t^7.143 + 2*g1^24*t^7.175 + (4*t^7.206)/g1^6 + (6*t^7.238)/g1^36 + g1^32*t^7.566 + 2*g1^2*t^7.598 + (8*t^7.629)/g1^28 + g1^40*t^7.958 + 2*g1^10*t^7.99 + (5*t^8.084)/g1^80 + g1^48*t^8.35 - g1^18*t^8.381 + (3*t^8.413)/g1^12 + (2*t^8.444)/g1^42 + (4*t^8.476)/g1^72 + g1^56*t^8.741 - (4*t^8.804)/g1^4 + (2*t^8.836)/g1^34 + (11*t^8.867)/g1^64 - t^4.206/(g1^6*y) - (2*t^6.227)/(g1^26*y) - t^6.619/(g1^18*y) - t^7.01/(g1^10*y) + t^7.042/(g1^40*y) + (3*t^7.402)/(g1^2*y) + (2*t^7.434)/(g1^32*y) + (2*g1^6*t^7.794)/y + (4*t^7.825)/(g1^24*y) + (4*g1^14*t^8.185)/y + (4*t^8.217)/(g1^16*y) - (3*t^8.248)/(g1^46*y) + (g1^22*t^8.577)/y + (4*t^8.608)/(g1^8*y) - (2*t^8.64)/(g1^38*y) + (g1^30*t^8.969)/y - (t^4.206*y)/g1^6 - (2*t^6.227*y)/g1^26 - (t^6.619*y)/g1^18 - (t^7.01*y)/g1^10 + (t^7.042*y)/g1^40 + (3*t^7.402*y)/g1^2 + (2*t^7.434*y)/g1^32 + 2*g1^6*t^7.794*y + (4*t^7.825*y)/g1^24 + 4*g1^14*t^8.185*y + (4*t^8.217*y)/g1^16 - (3*t^8.248*y)/g1^46 + g1^22*t^8.577*y + (4*t^8.608*y)/g1^8 - (2*t^8.64*y)/g1^38 + g1^30*t^8.969*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46597 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{1}^{2}$ + ${ }M_{2}M_{3}$ 0.6029 0.7691 0.7839 [M:[0.6807, 1.0639, 0.9361, 0.6807], q:[0.3298, 0.9895], qb:[0.6063, 0.4575], phi:[0.4042]] 2*t^2.042 + t^2.362 + t^2.425 + t^2.808 + 2*t^3.192 + t^3.575 + 3*t^4.084 + t^4.341 + 2*t^4.404 + 2*t^4.467 + t^4.724 + 2*t^4.787 + 3*t^4.851 + t^5.171 + 4*t^5.234 + 2*t^5.554 + 3*t^5.617 + t^5.937 - t^4.213/y - t^4.213*y detail