Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47076 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_2$ + $ M_5q_2\tilde{q}_2$ 0.6839 0.8913 0.7673 [X:[], M:[0.8188, 0.7874, 0.6812, 0.7874, 1.1063], q:[0.75, 0.4312], qb:[0.3563, 0.4626], phi:[0.5]] [X:[], M:[[3], [-2], [-3], [-2], [1]], q:[[0], [-3]], qb:[[1], [2]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_2$, $ M_4$, $ q_2\tilde{q}_1$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1^2$, $ M_5$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ M_3^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_2M_3$, $ M_3M_4$, $ M_3q_2\tilde{q}_1$, $ M_1M_3$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_2M_4$, $ M_4^2$, $ M_2q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_1M_2$, $ M_1M_4$, $ \phi_1q_1\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3\phi_1^2$, $ \phi_1q_1q_2$, $ M_3M_5$, $ M_2\phi_1^2$, $ M_4\phi_1^2$, $ M_3q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1\phi_1^2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_2M_5$, $ M_4M_5$, $ M_2q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_1$, $ M_5q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_1M_5$, $ M_5\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1^2\tilde{q}_2$ . -3 t^2.04 + 3*t^2.36 + 2*t^2.46 + t^3. + 2*t^3.32 + t^3.86 + 2*t^4.09 + t^4.18 + t^4.28 + 3*t^4.41 + 2*t^4.5 + 6*t^4.72 + 6*t^4.82 + 3*t^4.91 + t^5.04 + 5*t^5.36 + 2*t^5.46 + 5*t^5.68 + 3*t^5.78 - 3*t^6. - t^6.09 + 2*t^6.13 + 3*t^6.22 + 2*t^6.32 + 6*t^6.45 + 5*t^6.54 + 5*t^6.64 + 2*t^6.73 + 6*t^6.77 + 5*t^6.86 + t^6.96 + 11*t^7.09 + 11*t^7.18 + 7*t^7.28 + 4*t^7.37 + 5*t^7.41 + 9*t^7.72 + 5*t^7.82 + 2*t^7.91 + t^7.95 + 5*t^8.04 + 5*t^8.14 + 3*t^8.17 + 4*t^8.23 + t^8.27 - 8*t^8.36 - 8*t^8.46 + 6*t^8.49 - t^8.55 + 8*t^8.59 + 5*t^8.68 + 2*t^8.78 + 12*t^8.81 + 10*t^8.91 - t^4.5/y - t^6.54/y - (2*t^6.86)/y - t^6.96/y + t^7.18/y + (3*t^7.41)/y + (2*t^7.5)/y + (3*t^7.72)/y + (5*t^7.82)/y + t^7.91/y + (2*t^8.04)/y + (2*t^8.14)/y + (5*t^8.36)/y + (3*t^8.46)/y - t^8.59/y + (6*t^8.68)/y + (4*t^8.78)/y - t^8.91/y - t^4.5*y - t^6.54*y - 2*t^6.86*y - t^6.96*y + t^7.18*y + 3*t^7.41*y + 2*t^7.5*y + 3*t^7.72*y + 5*t^7.82*y + t^7.91*y + 2*t^8.04*y + 2*t^8.14*y + 5*t^8.36*y + 3*t^8.46*y - t^8.59*y + 6*t^8.68*y + 4*t^8.78*y - t^8.91*y t^2.04/g1^3 + (3*t^2.36)/g1^2 + 2*g1^3*t^2.46 + t^3. + 2*g1*t^3.32 + t^3.86/g1^2 + (2*t^4.09)/g1^6 + t^4.18/g1 + g1^4*t^4.28 + (3*t^4.41)/g1^5 + 2*t^4.5 + (6*t^4.72)/g1^4 + 6*g1*t^4.82 + 3*g1^6*t^4.91 + t^5.04/g1^3 + (5*t^5.36)/g1^2 + 2*g1^3*t^5.46 + (5*t^5.68)/g1 + 3*g1^4*t^5.78 - 3*t^6. - g1^5*t^6.09 + (2*t^6.13)/g1^9 + (3*t^6.22)/g1^4 + 2*g1*t^6.32 + (6*t^6.45)/g1^8 + (5*t^6.54)/g1^3 + 5*g1^2*t^6.64 + 2*g1^7*t^6.73 + (6*t^6.77)/g1^7 + (5*t^6.86)/g1^2 + g1^3*t^6.96 + (11*t^7.09)/g1^6 + (11*t^7.18)/g1 + 7*g1^4*t^7.28 + 4*g1^9*t^7.37 + (5*t^7.41)/g1^5 + (9*t^7.72)/g1^4 + 5*g1*t^7.82 + 2*g1^6*t^7.91 + t^7.95/g1^8 + (5*t^8.04)/g1^3 + 5*g1^2*t^8.14 + (3*t^8.17)/g1^12 + 4*g1^7*t^8.23 + t^8.27/g1^7 - (8*t^8.36)/g1^2 - 8*g1^3*t^8.46 + (6*t^8.49)/g1^11 - g1^8*t^8.55 + (8*t^8.59)/g1^6 + (5*t^8.68)/g1 + 2*g1^4*t^8.78 + (12*t^8.81)/g1^10 + (10*t^8.91)/g1^5 - t^4.5/y - t^6.54/(g1^3*y) - (2*t^6.86)/(g1^2*y) - (g1^3*t^6.96)/y + t^7.18/(g1*y) + (3*t^7.41)/(g1^5*y) + (2*t^7.5)/y + (3*t^7.72)/(g1^4*y) + (5*g1*t^7.82)/y + (g1^6*t^7.91)/y + (2*t^8.04)/(g1^3*y) + (2*g1^2*t^8.14)/y + (5*t^8.36)/(g1^2*y) + (3*g1^3*t^8.46)/y - t^8.59/(g1^6*y) + (6*t^8.68)/(g1*y) + (4*g1^4*t^8.78)/y - t^8.91/(g1^5*y) - t^4.5*y - (t^6.54*y)/g1^3 - (2*t^6.86*y)/g1^2 - g1^3*t^6.96*y + (t^7.18*y)/g1 + (3*t^7.41*y)/g1^5 + 2*t^7.5*y + (3*t^7.72*y)/g1^4 + 5*g1*t^7.82*y + g1^6*t^7.91*y + (2*t^8.04*y)/g1^3 + 2*g1^2*t^8.14*y + (5*t^8.36*y)/g1^2 + 3*g1^3*t^8.46*y - (t^8.59*y)/g1^6 + (6*t^8.68*y)/g1 + 4*g1^4*t^8.78*y - (t^8.91*y)/g1^5


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46726 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_2$ 0.6936 0.9082 0.7637 [X:[], M:[0.8256, 0.7829, 0.6744, 0.7829], q:[0.75, 0.4244], qb:[0.3585, 0.4671], phi:[0.5]] t^2.02 + 3*t^2.35 + 2*t^2.48 + t^2.67 + t^3. + t^3.33 + t^3.85 + 2*t^4.05 + t^4.17 + t^4.3 + 3*t^4.37 + 2*t^4.5 + 7*t^4.7 + 6*t^4.83 + 3*t^4.95 + 4*t^5.02 + 2*t^5.15 + 5*t^5.35 + 2*t^5.48 + 3*t^5.67 + t^5.8 - 2*t^6. - t^4.5/y - t^4.5*y detail