Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47072 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_3\phi_1q_2\tilde{q}_2$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_2^2$ + $ M_6q_2\tilde{q}_1$ 0.7076 0.9351 0.7567 [X:[], M:[0.8199, 0.8199, 0.6801, 0.6801, 0.7206, 1.1397], q:[0.75, 0.4301], qb:[0.4301, 0.3897], phi:[0.5]] [X:[], M:[[1, 1], [-1, 0], [1, 0], [-1, -1], [0, -2], [0, 1]], q:[[0, 0], [-1, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_4$, $ M_5$, $ M_2$, $ q_2\tilde{q}_2$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1^2$, $ M_6$, $ q_1\tilde{q}_2$, $ M_3^2$, $ \phi_1\tilde{q}_1^2$, $ M_4^2$, $ \phi_1q_2^2$, $ M_3M_4$, $ \phi_1q_2\tilde{q}_1$, $ M_4M_5$, $ M_3M_5$, $ M_5^2$, $ M_1M_3$, $ M_2M_3$, $ M_1M_4$, $ M_2M_4$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_2M_4$, $ M_4q_2\tilde{q}_2$, $ M_1M_3$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2M_5$, $ M_5q_2\tilde{q}_2$, $ M_1M_5$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_2q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_1M_2$, $ \phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ M_4\phi_1^2$, $ \phi_1q_1q_2$, $ M_5\phi_1^2$, $ M_4M_6$, $ M_2\phi_1^2$, $ M_4q_1\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3M_6$, $ M_1\phi_1^2$, $ M_3q_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_5M_6$, $ M_5q_1\tilde{q}_2$, $ M_2M_6$, $ M_6q_2\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_1M_6$, $ M_6\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1\tilde{q}_2^2$ . -5 2*t^2.04 + t^2.16 + 4*t^2.46 + t^3. + 2*t^3.42 + 6*t^4.08 + 2*t^4.2 + t^4.32 + 8*t^4.5 + 4*t^4.62 + 10*t^4.92 + 2*t^5.04 + t^5.16 + 8*t^5.46 + 2*t^5.58 + 6*t^5.88 - 5*t^6. + 8*t^6.12 + 6*t^6.24 + 2*t^6.36 + t^6.49 + 20*t^6.54 + 8*t^6.66 + 4*t^6.78 + 2*t^6.84 + 16*t^6.96 + 12*t^7.08 + 2*t^7.2 + t^7.32 + 16*t^7.38 + 12*t^7.5 + 4*t^7.62 + 2*t^7.74 + 18*t^7.92 - 8*t^8.04 + 10*t^8.16 + 8*t^8.28 + 12*t^8.34 + 6*t^8.4 - 20*t^8.46 + 2*t^8.53 + 24*t^8.58 + t^8.65 + 20*t^8.7 + 8*t^8.82 + 2*t^8.88 + 4*t^8.94 - t^4.5/y - (2*t^6.54)/y - t^6.66/y - (2*t^6.96)/y + (2*t^7.08)/y + (2*t^7.2)/y + (8*t^7.5)/y + (4*t^7.62)/y + (5*t^7.92)/y + (4*t^8.04)/y + t^8.16/y + t^8.34/y + (10*t^8.46)/y - t^8.58/y - (2*t^8.7)/y - t^8.82/y + (8*t^8.88)/y - t^4.5*y - 2*t^6.54*y - t^6.66*y - 2*t^6.96*y + 2*t^7.08*y + 2*t^7.2*y + 8*t^7.5*y + 4*t^7.62*y + 5*t^7.92*y + 4*t^8.04*y + t^8.16*y + t^8.34*y + 10*t^8.46*y - t^8.58*y - 2*t^8.7*y - t^8.82*y + 8*t^8.88*y g1*t^2.04 + t^2.04/(g1*g2) + t^2.16/g2^2 + (2*t^2.46)/g1 + 2*g1*g2*t^2.46 + t^3. + 2*g2*t^3.42 + 2*g1^2*t^4.08 + (2*t^4.08)/(g1^2*g2^2) + (2*t^4.08)/g2 + t^4.2/(g1*g2^3) + (g1*t^4.2)/g2^2 + t^4.32/g2^4 + 4*t^4.5 + (2*t^4.5)/(g1^2*g2) + 2*g1^2*g2*t^4.5 + (2*t^4.62)/(g1*g2^2) + (2*g1*t^4.62)/g2 + (3*t^4.92)/g1^2 + 4*g2*t^4.92 + 3*g1^2*g2^2*t^4.92 + g1*t^5.04 + t^5.04/(g1*g2) + t^5.16/g2^2 + (4*t^5.46)/g1 + 4*g1*g2*t^5.46 + (2*t^5.58)/g2 + (3*g2*t^5.88)/g1 + 3*g1*g2^2*t^5.88 - 3*t^6. - t^6./(g1^2*g2) - g1^2*g2*t^6. + 2*g1^3*t^6.12 + (2*t^6.12)/(g1^3*g2^3) + (2*t^6.12)/(g1*g2^2) + (2*g1*t^6.12)/g2 + (2*t^6.24)/(g1^2*g2^4) + (2*t^6.24)/g2^3 + (2*g1^2*t^6.24)/g2^2 + t^6.36/(g1*g2^5) + (g1*t^6.36)/g2^4 + t^6.49/g2^6 + 6*g1*t^6.54 + (4*t^6.54)/(g1^3*g2^2) + (6*t^6.54)/(g1*g2) + 4*g1^3*g2*t^6.54 + (2*t^6.66)/(g1^2*g2^3) + (4*t^6.66)/g2^2 + (2*g1^2*t^6.66)/g2 + (2*t^6.78)/(g1*g2^4) + (2*g1*t^6.78)/g2^3 + 2*g2^2*t^6.84 + (5*t^6.96)/g1 + (3*t^6.96)/(g1^3*g2) + 5*g1*g2*t^6.96 + 3*g1^3*g2^2*t^6.96 + 4*g1^2*t^7.08 + (4*t^7.08)/(g1^2*g2^2) + (4*t^7.08)/g2 + t^7.2/(g1*g2^3) + (g1*t^7.2)/g2^2 + t^7.32/g2^4 + (4*t^7.38)/g1^3 + (4*g2*t^7.38)/g1 + 4*g1*g2^2*t^7.38 + 4*g1^3*g2^3*t^7.38 + 4*t^7.5 + (4*t^7.5)/(g1^2*g2) + 4*g1^2*g2*t^7.5 + (2*t^7.62)/(g1*g2^2) + (2*g1*t^7.62)/g2 + (2*t^7.74)/g2^3 + (5*t^7.92)/g1^2 + 8*g2*t^7.92 + 5*g1^2*g2^2*t^7.92 - 3*g1*t^8.04 - t^8.04/(g1^3*g2^2) - (3*t^8.04)/(g1*g2) - g1^3*g2*t^8.04 + 3*g1^4*t^8.16 + (3*t^8.16)/(g1^4*g2^4) + (2*t^8.16)/(g1^2*g2^3) + (2*g1^2*t^8.16)/g2 + (2*t^8.28)/(g1^3*g2^5) + (2*t^8.28)/(g1*g2^4) + (2*g1*t^8.28)/g2^3 + (2*g1^3*t^8.28)/g2^2 + (4*g2*t^8.34)/g1^2 + 4*g2^2*t^8.34 + 4*g1^2*g2^3*t^8.34 + (2*t^8.4)/(g1^2*g2^6) + (2*t^8.4)/g2^5 + (2*g1^2*t^8.4)/g2^4 - (8*t^8.46)/g1 - (2*t^8.46)/(g1^3*g2) - 8*g1*g2*t^8.46 - 2*g1^3*g2^2*t^8.46 + t^8.53/(g1*g2^7) + (g1*t^8.53)/g2^6 + 6*g1^2*t^8.58 + (4*t^8.58)/(g1^4*g2^3) + (6*t^8.58)/(g1^2*g2^2) + (4*t^8.58)/g2 + 4*g1^4*g2*t^8.58 + t^8.65/g2^8 + (4*t^8.7)/(g1^3*g2^4) + (6*t^8.7)/(g1*g2^3) + (6*g1*t^8.7)/g2^2 + (4*g1^3*t^8.7)/g2 + (2*t^8.82)/(g1^2*g2^5) + (4*t^8.82)/g2^4 + (2*g1^2*t^8.82)/g2^3 + (g2*t^8.88)/g1 + g1*g2^2*t^8.88 + (2*t^8.94)/(g1*g2^6) + (2*g1*t^8.94)/g2^5 - t^4.5/y - (g1*t^6.54)/y - t^6.54/(g1*g2*y) - t^6.66/(g2^2*y) - t^6.96/(g1*y) - (g1*g2*t^6.96)/y + (2*t^7.08)/(g2*y) + t^7.2/(g1*g2^3*y) + (g1*t^7.2)/(g2^2*y) + (4*t^7.5)/y + (2*t^7.5)/(g1^2*g2*y) + (2*g1^2*g2*t^7.5)/y + (2*t^7.62)/(g1*g2^2*y) + (2*g1*t^7.62)/(g2*y) + t^7.92/(g1^2*y) + (3*g2*t^7.92)/y + (g1^2*g2^2*t^7.92)/y + (2*g1*t^8.04)/y + (2*t^8.04)/(g1*g2*y) + t^8.16/(g2^2*y) + (g2^2*t^8.34)/y + (5*t^8.46)/(g1*y) + (5*g1*g2*t^8.46)/y - (g1^2*t^8.58)/y - t^8.58/(g1^2*g2^2*y) + t^8.58/(g2*y) - t^8.7/(g1*g2^3*y) - (g1*t^8.7)/(g2^2*y) - t^8.82/(g2^4*y) + (4*g2*t^8.88)/(g1*y) + (4*g1*g2^2*t^8.88)/y - t^4.5*y - g1*t^6.54*y - (t^6.54*y)/(g1*g2) - (t^6.66*y)/g2^2 - (t^6.96*y)/g1 - g1*g2*t^6.96*y + (2*t^7.08*y)/g2 + (t^7.2*y)/(g1*g2^3) + (g1*t^7.2*y)/g2^2 + 4*t^7.5*y + (2*t^7.5*y)/(g1^2*g2) + 2*g1^2*g2*t^7.5*y + (2*t^7.62*y)/(g1*g2^2) + (2*g1*t^7.62*y)/g2 + (t^7.92*y)/g1^2 + 3*g2*t^7.92*y + g1^2*g2^2*t^7.92*y + 2*g1*t^8.04*y + (2*t^8.04*y)/(g1*g2) + (t^8.16*y)/g2^2 + g2^2*t^8.34*y + (5*t^8.46*y)/g1 + 5*g1*g2*t^8.46*y - g1^2*t^8.58*y - (t^8.58*y)/(g1^2*g2^2) + (t^8.58*y)/g2 - (t^8.7*y)/(g1*g2^3) - (g1*t^8.7*y)/g2^2 - (t^8.82*y)/g2^4 + (4*g2*t^8.88*y)/g1 + 4*g1*g2^2*t^8.88*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46694 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_3\phi_1q_2\tilde{q}_2$ + $ M_4\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_5\phi_1\tilde{q}_2^2$ 0.7205 0.9585 0.7517 [X:[], M:[0.827, 0.827, 0.673, 0.673, 0.692], q:[0.75, 0.423], qb:[0.423, 0.404], phi:[0.5]] 2*t^2.02 + t^2.08 + 4*t^2.48 + t^2.54 + t^3. + t^3.46 + 6*t^4.04 + 2*t^4.09 + t^4.15 + 8*t^4.5 + 6*t^4.56 + t^4.61 + 10*t^4.96 + 6*t^5.02 + 2*t^5.08 + 6*t^5.48 + 2*t^5.54 + 2*t^5.94 - 4*t^6. - t^4.5/y - t^4.5*y detail