Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
47028 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{2}M_{3}$ + ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ 0.586 0.7648 0.7663 [M:[0.856, 1.0039, 0.9961, 0.7081, 0.716], q:[0.7899, 0.7821], qb:[0.214, 0.502], phi:[0.428]] [M:[[-4], [14], [-14], [-22], [6]], q:[[15], [-13]], qb:[[-1], [7]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{5}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}$, ${ }M_{2}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}\phi_{1}^{2}$, ${ }q_{1}q_{2}$, ${ }M_{5}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{4}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}^{2}$ ${}$ -3 t^2.124 + 2*t^2.148 + 3*t^2.568 + t^2.988 + t^3.012 + t^4.249 + 2*t^4.272 + 4*t^4.296 + 3*t^4.692 + 7*t^4.716 + t^5.112 + 8*t^5.136 + 2*t^5.16 + 2*t^5.556 + 2*t^5.58 + t^5.976 - 3*t^6. + t^6.024 + t^6.373 + 2*t^6.396 + t^6.42 + 4*t^6.444 + 3*t^6.817 + 6*t^6.84 + 9*t^6.864 + t^7.237 + 8*t^7.26 + 15*t^7.284 + 3*t^7.308 + 2*t^7.68 + 12*t^7.704 + 2*t^7.728 + t^8.101 + t^8.124 - 6*t^8.148 + 2*t^8.172 + t^8.497 + 2*t^8.521 + 3*t^8.544 - 11*t^8.568 + 6*t^8.592 + 3*t^8.941 + 7*t^8.964 - 2*t^8.988 - t^4.284/y - t^6.408/y - t^6.432/y - (2*t^6.852)/y + (2*t^7.272)/y + t^7.296/y + (3*t^7.692)/y + (8*t^7.716)/y + t^8.112/y + (7*t^8.136)/y + (3*t^8.16)/y - t^8.533/y + (2*t^8.556)/y + (2*t^8.58)/y - (2*t^8.976)/y - t^4.284*y - t^6.408*y - t^6.432*y - 2*t^6.852*y + 2*t^7.272*y + t^7.296*y + 3*t^7.692*y + 8*t^7.716*y + t^8.112*y + 7*t^8.136*y + 3*t^8.16*y - t^8.533*y + 2*t^8.556*y + 2*t^8.58*y - 2*t^8.976*y t^2.124/g1^22 + 2*g1^6*t^2.148 + (3*t^2.568)/g1^4 + t^2.988/g1^14 + g1^14*t^3.012 + t^4.249/g1^44 + (2*t^4.272)/g1^16 + 4*g1^12*t^4.296 + (3*t^4.692)/g1^26 + 7*g1^2*t^4.716 + t^5.112/g1^36 + (8*t^5.136)/g1^8 + 2*g1^20*t^5.16 + (2*t^5.556)/g1^18 + 2*g1^10*t^5.58 + t^5.976/g1^28 - 3*t^6. + g1^28*t^6.024 + t^6.373/g1^66 + (2*t^6.396)/g1^38 + t^6.42/g1^10 + 4*g1^18*t^6.444 + (3*t^6.817)/g1^48 + (6*t^6.84)/g1^20 + 9*g1^8*t^6.864 + t^7.237/g1^58 + (8*t^7.26)/g1^30 + (15*t^7.284)/g1^2 + 3*g1^26*t^7.308 + (2*t^7.68)/g1^40 + (12*t^7.704)/g1^12 + 2*g1^16*t^7.728 + t^8.101/g1^50 + t^8.124/g1^22 - 6*g1^6*t^8.148 + 2*g1^34*t^8.172 + t^8.497/g1^88 + (2*t^8.521)/g1^60 + (3*t^8.544)/g1^32 - (11*t^8.568)/g1^4 + 6*g1^24*t^8.592 + (3*t^8.941)/g1^70 + (7*t^8.964)/g1^42 - (2*t^8.988)/g1^14 - t^4.284/(g1^2*y) - t^6.408/(g1^24*y) - (g1^4*t^6.432)/y - (2*t^6.852)/(g1^6*y) + (2*t^7.272)/(g1^16*y) + (g1^12*t^7.296)/y + (3*t^7.692)/(g1^26*y) + (8*g1^2*t^7.716)/y + t^8.112/(g1^36*y) + (7*t^8.136)/(g1^8*y) + (3*g1^20*t^8.16)/y - t^8.533/(g1^46*y) + (2*t^8.556)/(g1^18*y) + (2*g1^10*t^8.58)/y - (2*t^8.976)/(g1^28*y) - (t^4.284*y)/g1^2 - (t^6.408*y)/g1^24 - g1^4*t^6.432*y - (2*t^6.852*y)/g1^6 + (2*t^7.272*y)/g1^16 + g1^12*t^7.296*y + (3*t^7.692*y)/g1^26 + 8*g1^2*t^7.716*y + (t^8.112*y)/g1^36 + (7*t^8.136*y)/g1^8 + 3*g1^20*t^8.16*y - (t^8.533*y)/g1^46 + (2*t^8.556*y)/g1^18 + 2*g1^10*t^8.58*y - (2*t^8.976*y)/g1^28


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46683 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{2}M_{3}$ + ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ 0.5659 0.7271 0.7782 [M:[0.855, 1.0074, 0.9926, 0.7027], q:[0.7936, 0.7788], qb:[0.2138, 0.5037], phi:[0.4275]] t^2.108 + t^2.152 + 3*t^2.565 + t^2.978 + t^3.022 + t^3.848 + t^4.216 + t^4.26 + 2*t^4.305 + 3*t^4.673 + 4*t^4.717 + t^5.086 + 7*t^5.13 + t^5.175 + 2*t^5.543 + 2*t^5.587 + 2*t^5.956 - 2*t^6. - t^4.283/y - t^4.283*y detail