Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46999 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{2}$ 0.6993 0.8739 0.8002 [M:[0.9554, 0.9803, 1.1254, 0.6881, 0.8746, 0.7689], q:[0.5948, 0.4498], qb:[0.4248, 0.7813], phi:[0.4373]] [M:[[1, -7], [-1, -11], [0, 4], [0, 6], [0, -4], [1, 3]], q:[[0, 11], [-1, -4]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{6}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{6}$, ${ }M_{5}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}M_{5}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}^{2}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$ ${}$ -3 t^2.064 + t^2.307 + 2*t^2.624 + t^2.866 + t^2.941 + t^3.619 + t^3.861 + t^4.01 + 2*t^4.129 + 2*t^4.371 + t^4.446 + t^4.613 + 2*t^4.688 + t^4.881 + 3*t^4.93 + t^5.005 + t^5.173 + 4*t^5.248 + t^5.49 + t^5.565 + t^5.683 + t^5.732 + t^5.807 + t^5.882 + t^5.925 - 3*t^6. + t^6.168 + 2*t^6.193 + t^6.242 + 2*t^6.435 + 3*t^6.485 + 2*t^6.634 + 2*t^6.678 + t^6.727 + 3*t^6.752 + t^6.92 + t^6.945 + t^6.951 + 4*t^6.995 + 2*t^7.07 + t^7.188 + 3*t^7.237 + 3*t^7.312 - t^7.387 + 2*t^7.48 + t^7.505 + 4*t^7.554 + t^7.629 + t^7.722 + t^7.747 + 2*t^7.797 - t^7.822 + 6*t^7.871 + t^7.946 + 2*t^7.99 + t^8.021 + t^8.039 - 4*t^8.064 + 2*t^8.114 + 2*t^8.189 + 2*t^8.232 + 2*t^8.257 - 3*t^8.307 + t^8.356 - 2*t^8.381 + t^8.431 + t^8.456 + t^8.474 + 3*t^8.499 + t^8.506 + 2*t^8.549 + t^8.599 - 6*t^8.624 + t^8.673 + 3*t^8.742 + t^8.748 + 3*t^8.791 + t^8.817 + t^8.823 - 2*t^8.866 + t^8.891 - 3*t^8.941 + 2*t^8.984 - t^4.312/y - t^6.376/y - t^6.619/y - t^6.936/y - t^7.178/y - t^7.253/y + (2*t^7.371)/y + t^7.446/y + (3*t^7.688)/y + (3*t^7.93)/y + (2*t^8.005)/y + t^8.173/y + (3*t^8.248)/y - t^8.44/y + (2*t^8.49)/y + (2*t^8.565)/y + t^8.807/y + t^8.925/y - t^4.312*y - t^6.376*y - t^6.619*y - t^6.936*y - t^7.178*y - t^7.253*y + 2*t^7.371*y + t^7.446*y + 3*t^7.688*y + 3*t^7.93*y + 2*t^8.005*y + t^8.173*y + 3*t^8.248*y - t^8.44*y + 2*t^8.49*y + 2*t^8.565*y + t^8.807*y + t^8.925*y g2^6*t^2.064 + g1*g2^3*t^2.307 + (2*t^2.624)/g2^4 + (g1*t^2.866)/g2^7 + t^2.941/(g1*g2^11) + g1*g2*t^3.619 + (g1^2*t^3.861)/g2^2 + t^4.01/(g1^2*g2^10) + 2*g2^12*t^4.129 + 2*g1*g2^9*t^4.371 + (g2^5*t^4.446)/g1 + g1^2*g2^6*t^4.613 + 2*g2^2*t^4.688 + g2^20*t^4.881 + (3*g1*t^4.93)/g2 + t^5.005/(g1*g2^5) + (g1^2*t^5.173)/g2^4 + (4*t^5.248)/g2^8 + (g1*t^5.49)/g2^11 + t^5.565/(g1*g2^15) + g1*g2^7*t^5.683 + (g1^2*t^5.732)/g2^14 + t^5.807/g2^18 + t^5.882/(g1^2*g2^22) + g1^2*g2^4*t^5.925 - 3*t^6. + g1^3*g2*t^6.168 + 2*g2^18*t^6.193 + (g1*t^6.242)/g2^3 + 2*g1*g2^15*t^6.435 + (3*g1^2*t^6.485)/g2^6 + (2*t^6.634)/(g1^2*g2^14) + 2*g1^2*g2^12*t^6.678 + (g1^3*t^6.727)/g2^9 + 3*g2^8*t^6.752 + g1^3*g2^9*t^6.92 + g2^26*t^6.945 + t^6.951/(g1^3*g2^21) + 4*g1*g2^5*t^6.995 + (2*g2*t^7.07)/g1 + g1*g2^23*t^7.188 + 3*g1^2*g2^2*t^7.237 + (3*t^7.312)/g2^2 - t^7.387/(g1^2*g2^6) + (2*g1^3*t^7.48)/g2 + g2^16*t^7.505 + (4*g1*t^7.554)/g2^5 + t^7.629/(g1*g2^9) + (g1^4*t^7.722)/g2^4 + g1*g2^13*t^7.747 + (2*g1^2*t^7.797)/g2^8 - (g2^9*t^7.822)/g1 + (6*t^7.871)/g2^12 + t^7.946/(g1^2*g2^16) + 2*g1^2*g2^10*t^7.99 + t^8.021/(g1^4*g2^20) + (g1^3*t^8.039)/g2^11 - 4*g2^6*t^8.064 + (2*g1*t^8.114)/g2^15 + (2*t^8.189)/(g1*g2^19) + 2*g1^3*g2^7*t^8.232 + 2*g2^24*t^8.257 - 3*g1*g2^3*t^8.307 + (g1^2*t^8.356)/g2^18 - (2*t^8.381)/(g1*g2) + t^8.431/g2^22 + t^8.456/(g1^3*g2^5) + g1^4*g2^4*t^8.474 + 3*g1*g2^21*t^8.499 + t^8.506/(g1^2*g2^26) + 2*g1^2*t^8.549 + (g1^3*t^8.599)/g2^21 - (6*t^8.624)/g2^4 + (g1*t^8.673)/g2^25 + 3*g1^2*g2^18*t^8.742 + t^8.748/(g1*g2^29) + (3*g1^3*t^8.791)/g2^3 + g2^14*t^8.817 + t^8.823/(g1^3*g2^33) - (2*g1*t^8.866)/g2^7 + (g2^10*t^8.891)/g1^2 - (3*t^8.941)/(g1*g2^11) + 2*g1^3*g2^15*t^8.984 - t^4.312/(g2^2*y) - (g2^4*t^6.376)/y - (g1*g2*t^6.619)/y - t^6.936/(g2^6*y) - (g1*t^7.178)/(g2^9*y) - t^7.253/(g1*g2^13*y) + (2*g1*g2^9*t^7.371)/y + (g2^5*t^7.446)/(g1*y) + (3*g2^2*t^7.688)/y + (3*g1*t^7.93)/(g2*y) + (2*t^8.005)/(g1*g2^5*y) + (g1^2*t^8.173)/(g2^4*y) + (3*t^8.248)/(g2^8*y) - (g2^10*t^8.44)/y + (2*g1*t^8.49)/(g2^11*y) + (2*t^8.565)/(g1*g2^15*y) + t^8.807/(g2^18*y) + (g1^2*g2^4*t^8.925)/y - (t^4.312*y)/g2^2 - g2^4*t^6.376*y - g1*g2*t^6.619*y - (t^6.936*y)/g2^6 - (g1*t^7.178*y)/g2^9 - (t^7.253*y)/(g1*g2^13) + 2*g1*g2^9*t^7.371*y + (g2^5*t^7.446*y)/g1 + 3*g2^2*t^7.688*y + (3*g1*t^7.93*y)/g2 + (2*t^8.005*y)/(g1*g2^5) + (g1^2*t^8.173*y)/g2^4 + (3*t^8.248*y)/g2^8 - g2^10*t^8.44*y + (2*g1*t^8.49*y)/g2^11 + (2*t^8.565*y)/(g1*g2^15) + (t^8.807*y)/g2^18 + g1^2*g2^4*t^8.925*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55157 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ 0.6976 0.8709 0.801 [M:[1.0, 0.9895, 1.1134, 0.6702, 0.8866, 0.7836], q:[0.562, 0.438], qb:[0.4485, 0.7784], phi:[0.4433]] t^2.01 + t^2.351 + 2*t^2.66 + t^2.969 + t^3. + t^3.681 + t^3.958 + 3*t^4.021 + t^4.33 + 2*t^4.361 + 2*t^4.67 + 2*t^4.702 + t^4.979 + 3*t^5.01 + 4*t^5.319 + t^5.351 + t^5.628 + t^5.66 + t^5.691 + t^5.937 + t^5.969 - 2*t^6. - t^4.33/y - t^4.33*y detail
55194 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{2}$ + ${ }M_{2}^{2}$ 0.699 0.874 0.7998 [M:[0.9596, 1.0, 1.1201, 0.6801, 0.8799, 0.7598], q:[0.5802, 0.4601], qb:[0.4198, 0.78], phi:[0.44]] t^2.04 + t^2.28 + 2*t^2.64 + t^2.879 + t^3. + t^3.599 + t^3.839 + 3*t^4.081 + 2*t^4.32 + t^4.441 + t^4.559 + 2*t^4.68 + t^4.801 + 3*t^4.919 + t^5.04 + t^5.158 + 4*t^5.28 + t^5.519 + 2*t^5.64 + t^5.758 + 2*t^5.879 - 2*t^6. - t^4.32/y - t^4.32*y detail
50960 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{2}$ + ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$ 0.7165 0.904 0.7926 [M:[0.9701, 0.9701, 1.1244, 0.6866, 0.8756, 0.7811, 0.7811], q:[0.5921, 0.4378], qb:[0.4378, 0.7811], phi:[0.4378]] t^2.06 + 2*t^2.343 + 2*t^2.627 + 2*t^2.91 + 2*t^3.94 + 2*t^4.12 + 4*t^4.403 + 5*t^4.687 + t^4.866 + 6*t^4.97 + 7*t^5.254 + 2*t^5.537 + 3*t^5.821 - 3*t^6. - t^4.313/y - t^4.313*y detail
55351 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}^{2}$ 0.6634 0.8391 0.7906 [M:[0.7882, 0.8118, 1.2, 0.8, 0.8, 0.7882], q:[0.8, 0.4118], qb:[0.3882, 0.8], phi:[0.4]] 2*t^2.365 + 3*t^2.4 + t^2.435 + t^3.529 + t^3.565 + t^3.671 + 3*t^4.729 + 6*t^4.765 + 9*t^4.8 + 3*t^4.835 + t^4.871 + 2*t^5.894 + 4*t^5.929 + 2*t^5.965 - 2*t^6. - t^4.2/y - t^4.2*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46691 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ 0.6814 0.8416 0.8096 [M:[0.9657, 0.9657, 1.1263, 0.6895, 0.8737], q:[0.5974, 0.4368], qb:[0.4368, 0.7816], phi:[0.4368]] t^2.069 + 2*t^2.621 + 2*t^2.897 + 2*t^3.655 + 2*t^3.931 + 2*t^4.137 + 2*t^4.413 + 2*t^4.69 + t^4.895 + 2*t^4.966 + 3*t^5.242 + 2*t^5.518 + 2*t^5.724 + 3*t^5.794 - 3*t^6. - t^4.31/y - t^4.31*y detail