Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46964 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ q_1\tilde{q}_1\tilde{q}_2^2$ + $ M_4\phi_1q_2\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ 0.6925 0.9093 0.7615 [X:[], M:[0.8231, 0.7074, 0.6769, 0.6769, 1.1463], q:[0.75, 0.4269], qb:[0.3963, 0.4269], phi:[0.5]] [X:[], M:[[-1], [4], [1], [1], [-2]], q:[[0], [1]], qb:[[-2], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_4$, $ M_2$, $ M_1$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1^2$, $ M_5$, $ q_1\tilde{q}_1$, $ q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_2M_3$, $ M_2M_4$, $ M_2^2$, $ M_1M_3$, $ M_1M_4$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_1M_2$, $ M_2q_2\tilde{q}_1$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ \phi_1q_1\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ M_2\phi_1^2$, $ M_3M_5$, $ M_4M_5$, $ M_1\phi_1^2$, $ M_3q_1\tilde{q}_1$, $ M_4q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_2M_5$, $ M_2q_1\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ M_2q_1\tilde{q}_2$, $ M_1M_5$, $ M_5q_2\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1^2\tilde{q}_2$ . -2 2*t^2.03 + t^2.12 + 3*t^2.47 + t^3. + 2*t^3.44 + t^3.53 + 6*t^4.06 + 2*t^4.15 + t^4.24 + 6*t^4.5 + 3*t^4.59 + 6*t^4.94 + 2*t^5.03 + t^5.12 + 7*t^5.47 + 4*t^5.56 + t^5.65 + 4*t^5.91 - 2*t^6. + 8*t^6.09 + 6*t^6.18 + 2*t^6.28 + t^6.37 + 15*t^6.53 + 6*t^6.62 + 3*t^6.71 + 2*t^6.88 + 10*t^6.97 + 9*t^7.06 + 2*t^7.15 + t^7.24 + 6*t^7.41 + 10*t^7.5 + 9*t^7.59 + 4*t^7.68 + t^7.78 + 10*t^7.94 - 4*t^8.03 + 13*t^8.12 + 8*t^8.21 + 6*t^8.31 + 6*t^8.38 + 2*t^8.4 - 9*t^8.47 + t^8.49 + 18*t^8.56 + 15*t^8.65 + 6*t^8.74 + 3*t^8.84 + 2*t^8.91 - t^4.5/y - (2*t^6.53)/y - t^6.62/y - t^6.97/y + (2*t^7.06)/y + (2*t^7.15)/y + (6*t^7.5)/y + (3*t^7.59)/y + (2*t^7.94)/y + (3*t^8.03)/y + t^8.12/y + t^8.38/y + (9*t^8.47)/y + t^8.56/y - t^8.65/y - t^8.74/y + (6*t^8.91)/y - t^4.5*y - 2*t^6.53*y - t^6.62*y - t^6.97*y + 2*t^7.06*y + 2*t^7.15*y + 6*t^7.5*y + 3*t^7.59*y + 2*t^7.94*y + 3*t^8.03*y + t^8.12*y + t^8.38*y + 9*t^8.47*y + t^8.56*y - t^8.65*y - t^8.74*y + 6*t^8.91*y 2*g1*t^2.03 + g1^4*t^2.12 + (3*t^2.47)/g1 + t^3. + (2*t^3.44)/g1^2 + g1*t^3.53 + 6*g1^2*t^4.06 + 2*g1^5*t^4.15 + g1^8*t^4.24 + 6*t^4.5 + 3*g1^3*t^4.59 + (6*t^4.94)/g1^2 + 2*g1*t^5.03 + g1^4*t^5.12 + (7*t^5.47)/g1 + 4*g1^2*t^5.56 + g1^5*t^5.65 + (4*t^5.91)/g1^3 - 2*t^6. + 8*g1^3*t^6.09 + 6*g1^6*t^6.18 + 2*g1^9*t^6.28 + g1^12*t^6.37 + 15*g1*t^6.53 + 6*g1^4*t^6.62 + 3*g1^7*t^6.71 + (2*t^6.88)/g1^4 + (10*t^6.97)/g1 + 9*g1^2*t^7.06 + 2*g1^5*t^7.15 + g1^8*t^7.24 + (6*t^7.41)/g1^3 + 10*t^7.5 + 9*g1^3*t^7.59 + 4*g1^6*t^7.68 + g1^9*t^7.78 + (10*t^7.94)/g1^2 - 4*g1*t^8.03 + 13*g1^4*t^8.12 + 8*g1^7*t^8.21 + 6*g1^10*t^8.31 + (6*t^8.38)/g1^4 + 2*g1^13*t^8.4 - (9*t^8.47)/g1 + g1^16*t^8.49 + 18*g1^2*t^8.56 + 15*g1^5*t^8.65 + 6*g1^8*t^8.74 + 3*g1^11*t^8.84 + (2*t^8.91)/g1^3 - t^4.5/y - (2*g1*t^6.53)/y - (g1^4*t^6.62)/y - t^6.97/(g1*y) + (2*g1^2*t^7.06)/y + (2*g1^5*t^7.15)/y + (6*t^7.5)/y + (3*g1^3*t^7.59)/y + (2*t^7.94)/(g1^2*y) + (3*g1*t^8.03)/y + (g1^4*t^8.12)/y + t^8.38/(g1^4*y) + (9*t^8.47)/(g1*y) + (g1^2*t^8.56)/y - (g1^5*t^8.65)/y - (g1^8*t^8.74)/y + (6*t^8.91)/(g1^3*y) - t^4.5*y - 2*g1*t^6.53*y - g1^4*t^6.62*y - (t^6.97*y)/g1 + 2*g1^2*t^7.06*y + 2*g1^5*t^7.15*y + 6*t^7.5*y + 3*g1^3*t^7.59*y + (2*t^7.94*y)/g1^2 + 3*g1*t^8.03*y + g1^4*t^8.12*y + (t^8.38*y)/g1^4 + (9*t^8.47*y)/g1 + g1^2*t^8.56*y - g1^5*t^8.65*y - g1^8*t^8.74*y + (6*t^8.91*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46654 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ q_1\tilde{q}_1\tilde{q}_2^2$ + $ M_4\phi_1q_2\tilde{q}_1$ 0.7058 0.934 0.7557 [X:[], M:[0.8301, 0.6794, 0.6699, 0.6699], q:[0.75, 0.4199], qb:[0.4103, 0.4199], phi:[0.5]] 2*t^2.01 + t^2.04 + 3*t^2.49 + t^2.52 + t^3. + t^3.48 + t^3.51 + 6*t^4.02 + 2*t^4.05 + t^4.08 + 6*t^4.5 + 5*t^4.53 + t^4.56 + 6*t^4.98 + 5*t^5.01 + 2*t^5.04 + 5*t^5.49 + 4*t^5.52 + t^5.55 + t^5.97 - t^6. - t^4.5/y - t^4.5*y detail