Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46927 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ 0.7143 0.8808 0.8109 [M:[0.9724, 1.0548, 1.0276, 0.8356, 0.9452, 0.8628], q:[0.4178, 0.6098], qb:[0.5274, 0.5546], phi:[0.4726]] [M:[[-3, 1], [2, 0], [3, -1], [-6, 0], [-2, 0], [-7, 1]], q:[[-3, 0], [6, -1]], qb:[[1, 0], [0, 1]], phi:[[-1, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{6}\phi_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{5}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{5}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}\phi_{1}^{2}$ ${}$ -3 t^2.507 + t^2.588 + 2*t^2.836 + t^2.917 + t^3.083 + t^3.246 + t^3.924 + t^4.253 + t^4.335 + t^4.501 + t^4.582 + t^4.664 + t^4.745 + t^4.829 + t^4.911 + t^5.013 + t^5.077 + t^5.095 + t^5.177 + 2*t^5.342 + 2*t^5.424 + t^5.505 + 3*t^5.671 + 2*t^5.753 + t^5.834 + t^5.918 - 3*t^6. + t^6.082 + t^6.163 - t^6.247 - t^6.329 - t^6.41 + t^6.431 + t^6.492 + t^6.513 - t^6.576 + 3*t^6.76 + 2*t^6.842 + t^6.923 + t^7.007 + 2*t^7.089 + 4*t^7.171 + 2*t^7.252 + t^7.334 + 2*t^7.336 + t^7.418 + 2*t^7.499 + t^7.52 + 3*t^7.581 + t^7.583 + t^7.602 + t^7.663 + t^7.665 + t^7.683 + t^7.765 + 3*t^7.849 + 2*t^7.912 + 2*t^7.931 + t^7.991 - t^7.994 + 2*t^8.012 - t^8.076 + t^8.094 + t^8.16 + 3*t^8.178 - t^8.241 + 4*t^8.259 + 2*t^8.341 + t^8.423 + 2*t^8.67 + t^8.752 + t^8.754 - 7*t^8.836 - 3*t^8.917 + t^8.938 + t^8.999 - t^4.418/y - t^6.924/y - t^7.006/y - t^7.253/y + t^7.582/y + t^7.829/y + t^7.911/y + t^8.095/y + (2*t^8.342)/y + (3*t^8.424)/y + t^8.505/y + t^8.59/y + (2*t^8.671)/y + (3*t^8.753)/y + t^8.834/y + (2*t^8.918)/y - t^4.418*y - t^6.924*y - t^7.006*y - t^7.253*y + t^7.582*y + t^7.829*y + t^7.911*y + t^8.095*y + 2*t^8.342*y + 3*t^8.424*y + t^8.505*y + t^8.59*y + 2*t^8.671*y + 3*t^8.753*y + t^8.834*y + 2*t^8.918*y t^2.507/g1^6 + (g2*t^2.588)/g1^7 + (2*t^2.836)/g1^2 + (g2*t^2.917)/g1^3 + (g1^3*t^3.083)/g2 + g1*g2*t^3.246 + t^3.924/g1^7 + t^4.253/g1^3 + (g2*t^4.335)/g1^4 + (g1^2*t^4.501)/g2 + g1*t^4.582 + g2*t^4.664 + (g2^2*t^4.745)/g1 + (g1^6*t^4.829)/g2 + g1^5*t^4.911 + t^5.013/g1^12 + (g1^11*t^5.077)/g2^2 + (g2*t^5.095)/g1^13 + (g2^2*t^5.177)/g1^14 + (2*t^5.342)/g1^8 + (2*g2*t^5.424)/g1^9 + (g2^2*t^5.505)/g1^10 + (3*t^5.671)/g1^4 + (2*g2*t^5.753)/g1^5 + (g2^2*t^5.834)/g1^6 + (g1*t^5.918)/g2 - 3*t^6. + (g2*t^6.082)/g1 + (g2^2*t^6.163)/g1^2 - (g1^5*t^6.247)/g2 - g1^4*t^6.329 - g1^3*g2*t^6.41 + t^6.431/g1^13 + g1^2*g2^2*t^6.492 + (g2*t^6.513)/g1^14 - (g1^9*t^6.576)/g2 + (3*t^6.76)/g1^9 + (2*g2*t^6.842)/g1^10 + (g2^2*t^6.923)/g1^11 + t^7.007/(g1^4*g2) + (2*t^7.089)/g1^5 + (4*g2*t^7.171)/g1^6 + (2*g2^2*t^7.252)/g1^7 + (g2^3*t^7.334)/g1^8 + (2*t^7.336)/g2 + t^7.418/g1 + (2*g2*t^7.499)/g1^2 + t^7.52/g1^18 + (3*g2^2*t^7.581)/g1^3 + (g1^5*t^7.583)/g2^2 + (g2*t^7.602)/g1^19 + (g2^3*t^7.663)/g1^4 + (g1^4*t^7.665)/g2 + (g2^2*t^7.683)/g1^20 + (g2^3*t^7.765)/g1^21 + (3*t^7.849)/g1^14 + (2*g1^9*t^7.912)/g2^2 + (2*g2*t^7.931)/g1^15 + g2^3*t^7.991 - (g1^8*t^7.994)/g2 + (2*g2^2*t^8.012)/g1^16 - g1^7*t^8.076 + (g2^3*t^8.094)/g1^17 + (g1^14*t^8.16)/g2^3 + (3*t^8.178)/g1^10 - (g1^13*t^8.241)/g2^2 + (4*g2*t^8.259)/g1^11 + (2*g2^2*t^8.341)/g1^12 + (g2^3*t^8.423)/g1^13 + (2*g2^2*t^8.67)/g1^8 + (g2^3*t^8.752)/g1^9 + t^8.754/(g1*g2) - (7*t^8.836)/g1^2 - (3*g2*t^8.917)/g1^3 + t^8.938/g1^19 + (g2^2*t^8.999)/g1^4 - t^4.418/(g1*y) - t^6.924/(g1^7*y) - (g2*t^7.006)/(g1^8*y) - t^7.253/(g1^3*y) + (g1*t^7.582)/y + (g1^6*t^7.829)/(g2*y) + (g1^5*t^7.911)/y + (g2*t^8.095)/(g1^13*y) + (2*t^8.342)/(g1^8*y) + (3*g2*t^8.424)/(g1^9*y) + (g2^2*t^8.505)/(g1^10*y) + t^8.59/(g1^3*g2*y) + (2*t^8.671)/(g1^4*y) + (3*g2*t^8.753)/(g1^5*y) + (g2^2*t^8.834)/(g1^6*y) + (2*g1*t^8.918)/(g2*y) - (t^4.418*y)/g1 - (t^6.924*y)/g1^7 - (g2*t^7.006*y)/g1^8 - (t^7.253*y)/g1^3 + g1*t^7.582*y + (g1^6*t^7.829*y)/g2 + g1^5*t^7.911*y + (g2*t^8.095*y)/g1^13 + (2*t^8.342*y)/g1^8 + (3*g2*t^8.424*y)/g1^9 + (g2^2*t^8.505*y)/g1^10 + (t^8.59*y)/(g1^3*g2) + (2*t^8.671*y)/g1^4 + (3*g2*t^8.753*y)/g1^5 + (g2^2*t^8.834*y)/g1^6 + (2*g1*t^8.918*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
53881 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{1}M_{7}$ 0.7132 0.8781 0.8122 [M:[1.0035, 1.0554, 0.9965, 0.8338, 0.9446, 0.8926, 0.9965], q:[0.4169, 0.5797], qb:[0.5277, 0.5866], phi:[0.4723]] t^2.501 + t^2.678 + 2*t^2.834 + 2*t^2.99 + t^3.343 + t^3.918 + t^4.251 + t^4.407 + t^4.427 + t^4.583 + t^4.739 + t^4.76 + t^4.895 + t^4.916 + t^4.936 + t^5.003 + t^5.179 + 2*t^5.335 + t^5.356 + t^5.491 + t^5.512 + 4*t^5.668 + 3*t^5.823 + 2*t^5.979 - 4*t^6. - t^4.417/y - t^4.417*y detail
55322 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ 0.6919 0.8476 0.8162 [M:[1.0153, 1.0031, 0.9847, 0.9908, 0.9969, 1.0092], q:[0.4954, 0.4893], qb:[0.5015, 0.5199], phi:[0.4985]] t^2.954 + t^2.972 + 2*t^2.991 + t^3.028 + t^3.046 + t^3.064 + t^4.431 + t^4.449 + 2*t^4.468 + t^4.486 + t^4.505 + t^4.523 + t^4.541 + t^4.56 + t^4.615 + 2*t^5.945 + t^5.963 + 2*t^5.982 - 2*t^6. - t^4.495/y - t^4.495*y detail
55376 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{6}^{2}$ 0.6979 0.8549 0.8164 [M:[1.046, 1.023, 0.954, 0.9309, 0.977, 1.0], q:[0.4655, 0.4885], qb:[0.5115, 0.5806], phi:[0.4885]] t^2.793 + t^2.862 + 2*t^2.931 + t^3. + t^3.138 + t^3.276 + t^4.258 + t^4.327 + 2*t^4.396 + t^4.465 + t^4.535 + t^4.604 + t^4.673 + t^4.742 + t^4.949 + t^5.586 + 2*t^5.724 + 2*t^5.793 + 3*t^5.862 + t^5.931 - 2*t^6. - t^4.465/y - t^4.465*y detail
55387 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$ 0.724 0.8987 0.8056 [M:[1.0, 1.0656, 1.0, 0.8031, 0.9344, 0.8687, 0.8687], q:[0.4015, 0.5985], qb:[0.5328, 0.5985], phi:[0.4672]] t^2.409 + 2*t^2.606 + 2*t^2.803 + 2*t^3. + t^3.811 + t^4.205 + 2*t^4.402 + t^4.598 + 2*t^4.795 + t^4.818 + 3*t^4.992 + 2*t^5.015 + 5*t^5.212 + 4*t^5.409 + 6*t^5.606 + 2*t^5.803 - 3*t^6. - t^4.402/y - t^4.402*y detail
55141 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}^{2}$ 0.6865 0.8649 0.7938 [M:[0.8539, 1.0831, 1.1461, 0.7506, 0.9169, 0.6877], q:[0.3753, 0.7708], qb:[0.5416, 0.4786], phi:[0.4584]] t^2.063 + t^2.252 + t^2.562 + 2*t^2.751 + t^3.061 + t^3.438 + t^3.627 + t^3.937 + 2*t^4.126 + t^4.247 + t^4.315 + t^4.436 + t^4.504 + 2*t^4.625 + 3*t^4.814 + 2*t^5.002 + 2*t^5.123 + 3*t^5.312 + 3*t^5.501 + t^5.622 + t^5.69 + t^5.811 + t^5.879 - t^6. - t^4.375/y - t^4.375*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46734 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{5}$ 0.7041 0.8617 0.8171 [M:[1.0, 1.0435, 1.0, 0.8694, 0.9565], q:[0.4347, 0.5653], qb:[0.5218, 0.5653], phi:[0.4782]] t^2.608 + 2*t^2.869 + 2*t^3. + 2*t^3.261 + t^4.043 + t^4.304 + 2*t^4.435 + t^4.565 + 2*t^4.696 + 3*t^4.826 + t^5.217 + 2*t^5.478 + 2*t^5.739 + 4*t^5.869 - 3*t^6. - t^4.435/y - t^4.435*y detail