Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46814 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_4$ + $ M_5\tilde{q}_1\tilde{q}_2$ | 0.662 | 0.821 | 0.8063 | [X:[], M:[1.1403, 0.9647, 1.0878, 0.8597, 0.6842], q:[0.4914, 0.3683], qb:[0.5439, 0.7719], phi:[0.4561]] | [X:[], M:[[-5], [-13], [4], [5], [-3]], q:[[11], [-6]], qb:[[2], [1]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_4$, $ \phi_1^2$, $ M_2$, $ M_3$, $ M_1$, $ \phi_1q_2^2$, $ q_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_5^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1q_1^2$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_5$, $ \phi_1\tilde{q}_1^2$, $ M_5\phi_1^2$, $ M_2M_5$, $ M_4^2$, $ M_3M_5$, $ M_4\phi_1^2$, $ M_2M_4$, $ M_1M_5$, $ \phi_1^4$, $ M_2\phi_1^2$, $ M_5\phi_1q_2^2$, $ M_2^2$, $ M_3M_4$, $ M_5q_1\tilde{q}_2$ | $M_5\phi_1q_1q_2$ | 0 | t^2.05 + t^2.58 + t^2.74 + t^2.89 + t^3.26 + t^3.42 + t^3.58 + t^3.79 + t^3.95 + 2*t^4.1 + t^4.32 + t^4.47 + 2*t^4.63 + t^4.79 + t^4.95 + t^5.16 + 2*t^5.32 + 2*t^5.47 + t^5.63 + t^5.79 + t^5.84 + 3*t^6.16 + 2*t^6.31 + t^6.37 + t^6.47 + t^6.53 + 3*t^6.68 + 2*t^6.84 + t^6.9 + 2*t^7. + 2*t^7.05 + t^7.16 + 2*t^7.21 + 3*t^7.37 + 3*t^7.53 + t^7.58 + 2*t^7.68 + t^7.74 + t^7.84 + 2*t^7.9 + t^8.05 + t^8.11 + 4*t^8.21 + t^8.26 + 2*t^8.37 + t^8.42 + t^8.52 - t^8.58 + t^8.63 + t^8.68 + 2*t^8.74 + t^8.79 + 2*t^8.95 - t^4.37/y - t^6.42/y - t^7.26/y + t^7.47/y + t^7.63/y + t^7.79/y + t^7.95/y + (3*t^8.32)/y + t^8.47/y + (2*t^8.63)/y + (2*t^8.84)/y - t^4.37*y - t^6.42*y - t^7.26*y + t^7.47*y + t^7.63*y + t^7.79*y + t^7.95*y + 3*t^8.32*y + t^8.47*y + 2*t^8.63*y + 2*t^8.84*y | t^2.05/g1^3 + g1^5*t^2.58 + t^2.74/g1^4 + t^2.89/g1^13 + g1^4*t^3.26 + t^3.42/g1^5 + t^3.58/g1^14 + g1^12*t^3.79 + g1^3*t^3.95 + (2*t^4.1)/g1^6 + g1^20*t^4.32 + g1^11*t^4.47 + 2*g1^2*t^4.63 + t^4.79/g1^7 + t^4.95/g1^16 + g1^10*t^5.16 + 2*g1*t^5.32 + (2*t^5.47)/g1^8 + t^5.63/g1^17 + t^5.79/g1^26 + g1^9*t^5.84 + (3*t^6.16)/g1^9 + (2*t^6.31)/g1^18 + g1^17*t^6.37 + t^6.47/g1^27 + g1^8*t^6.53 + (3*t^6.68)/g1 + (2*t^6.84)/g1^10 + g1^25*t^6.9 + (2*t^7.)/g1^19 + 2*g1^16*t^7.05 + t^7.16/g1^28 + 2*g1^7*t^7.21 + (3*t^7.37)/g1^2 + (3*t^7.53)/g1^11 + g1^24*t^7.58 + (2*t^7.68)/g1^20 + g1^15*t^7.74 + t^7.84/g1^29 + 2*g1^6*t^7.9 + t^8.05/g1^3 + g1^32*t^8.11 + (4*t^8.21)/g1^12 + g1^23*t^8.26 + (2*t^8.37)/g1^21 + g1^14*t^8.42 + t^8.52/g1^30 - g1^5*t^8.58 + g1^40*t^8.63 + t^8.68/g1^39 + (2*t^8.74)/g1^4 + g1^31*t^8.79 + 2*g1^22*t^8.95 - t^4.37/(g1^2*y) - t^6.42/(g1^5*y) - t^7.26/(g1^15*y) + (g1^11*t^7.47)/y + (g1^2*t^7.63)/y + t^7.79/(g1^7*y) + t^7.95/(g1^16*y) + (3*g1*t^8.32)/y + t^8.47/(g1^8*y) + (2*t^8.63)/(g1^17*y) + (2*g1^9*t^8.84)/y - (t^4.37*y)/g1^2 - (t^6.42*y)/g1^5 - (t^7.26*y)/g1^15 + g1^11*t^7.47*y + g1^2*t^7.63*y + (t^7.79*y)/g1^7 + (t^7.95*y)/g1^16 + 3*g1*t^8.32*y + (t^8.47*y)/g1^8 + (2*t^8.63*y)/g1^17 + 2*g1^9*t^8.84*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
55094 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_4$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_1M_6$ | 0.6746 | 0.8426 | 0.8006 | [X:[], M:[1.1463, 0.9803, 1.083, 0.8537, 0.6878, 0.8537], q:[0.4782, 0.3755], qb:[0.5415, 0.7707], phi:[0.4585]] | t^2.06 + 2*t^2.56 + t^2.75 + t^2.94 + t^3.25 + t^3.63 + t^3.75 + t^3.94 + 2*t^4.13 + t^4.24 + t^4.43 + 3*t^4.62 + t^4.81 + t^5. + 3*t^5.12 + 3*t^5.31 + 2*t^5.5 + t^5.69 + 2*t^5.81 + t^5.88 - t^6. - t^4.38/y - t^4.38*y | detail | |
51737 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_4$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_2\phi_1^2$ | 0.6537 | 0.8118 | 0.8053 | [X:[], M:[1.1765, 1.0588, 1.0588, 0.8235, 0.7059], q:[0.4118, 0.4118], qb:[0.5294, 0.7647], phi:[0.4706]] | t^2.12 + t^2.47 + t^2.82 + 2*t^3.18 + 2*t^3.53 + 3*t^3.88 + 3*t^4.24 + 2*t^4.59 + 2*t^4.94 + 3*t^5.29 + 3*t^5.65 + 2*t^6. - t^4.41/y - t^4.41*y | detail | {a: 51387/78608, c: 31907/39304, M1: 20/17, M2: 18/17, M3: 18/17, M4: 14/17, M5: 12/17, q1: 7/17, q2: 7/17, qb1: 9/17, qb2: 13/17, phi1: 8/17} |
52640 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_4$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_2^2$ | 0.6608 | 0.8195 | 0.8064 | [X:[], M:[1.1538, 1.0, 1.0769, 0.8462, 0.6923], q:[0.4615, 0.3846], qb:[0.5385, 0.7692], phi:[0.4615]] | t^2.08 + t^2.54 + t^2.77 + t^3. + t^3.23 + t^3.46 + 2*t^3.69 + t^3.92 + 3*t^4.15 + t^4.38 + 2*t^4.62 + t^4.85 + 2*t^5.08 + 2*t^5.31 + 2*t^5.54 + 2*t^5.77 + t^6. - t^4.38/y - t^4.38*y | detail | {a: 23229/35152, c: 14403/17576, M1: 15/13, M2: 1, M3: 14/13, M4: 11/13, M5: 9/13, q1: 6/13, q2: 5/13, qb1: 7/13, qb2: 10/13, phi1: 6/13} |
55388 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_4$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_3M_6$ | 0.6702 | 0.8351 | 0.8025 | [X:[], M:[1.1348, 0.9504, 1.0922, 0.8652, 0.6809, 0.9078], q:[0.5035, 0.3617], qb:[0.5461, 0.773], phi:[0.4539]] | t^2.04 + t^2.6 + 2*t^2.72 + t^2.85 + t^3.4 + t^3.53 + t^3.83 + t^3.96 + 2*t^4.09 + t^4.38 + t^4.51 + 2*t^4.64 + 2*t^4.77 + t^4.89 + t^5.19 + 2*t^5.32 + 4*t^5.45 + 2*t^5.57 + t^5.7 - t^6. - t^4.36/y - t^4.36*y | detail | {a: 63/94, c: 157/188, M1: 160/141, M2: 134/141, M3: 154/141, M4: 122/141, M5: 32/47, M6: 128/141, q1: 71/141, q2: 17/47, qb1: 77/141, qb2: 109/141, phi1: 64/141} |
55261 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_4$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_1q_2$ | 0.6827 | 0.8615 | 0.7925 | [X:[], M:[1.1398, 0.9635, 1.0882, 0.8602, 0.6839, 0.6839], q:[0.4924, 0.3678], qb:[0.5441, 0.772], phi:[0.4559]] | 2*t^2.05 + t^2.58 + t^2.74 + t^2.89 + t^3.26 + t^3.42 + t^3.57 + t^3.79 + 4*t^4.1 + t^4.32 + t^4.48 + 3*t^4.63 + 2*t^4.79 + 2*t^4.94 + t^5.16 + 3*t^5.32 + 3*t^5.47 + 2*t^5.63 + t^5.78 + 2*t^5.85 - t^6. - t^4.37/y - t^4.37*y | detail | |
54072 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_4$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1q_2^2$ | 0.679 | 0.8518 | 0.7972 | [X:[], M:[1.1516, 0.9942, 1.0787, 0.8484, 0.691, 0.7754], q:[0.4664, 0.382], qb:[0.5393, 0.7697], phi:[0.4607]] | t^2.07 + t^2.33 + t^2.55 + t^2.76 + t^2.98 + t^3.24 + t^3.45 + t^3.71 + t^3.93 + 2*t^4.15 + t^4.18 + 2*t^4.4 + 2*t^4.62 + t^4.65 + t^4.84 + t^4.87 + t^5.06 + 2*t^5.09 + 3*t^5.31 + 2*t^5.53 + t^5.56 + 2*t^5.78 + t^5.97 - t^4.38/y - t^4.38*y | detail | |
50803 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_4$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6\phi_1^2$ | 0.6541 | 0.8078 | 0.8098 | [X:[], M:[1.1458, 0.9792, 1.0833, 0.8542, 0.6875, 1.0833], q:[0.4792, 0.375], qb:[0.5417, 0.7708], phi:[0.4583]] | t^2.06 + t^2.56 + t^2.94 + 2*t^3.25 + t^3.44 + t^3.62 + t^3.75 + t^3.94 + 2*t^4.12 + t^4.25 + t^4.44 + 2*t^4.62 + t^5. + t^5.12 + 2*t^5.31 + t^5.5 + 2*t^5.81 + t^5.88 - t^6. - t^4.38/y - t^4.38*y | detail | {a: 4019/6144, c: 4963/6144, M1: 55/48, M2: 47/48, M3: 13/12, M4: 41/48, M5: 11/16, M6: 13/12, q1: 23/48, q2: 3/8, qb1: 13/24, qb2: 37/48, phi1: 11/24} |
53979 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_4$ + $ M_5\tilde{q}_1\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ | 0.6818 | 0.8582 | 0.7944 | [X:[], M:[1.1347, 0.9502, 1.0922, 0.8653, 0.6808, 0.7233], q:[0.5037, 0.3616], qb:[0.5461, 0.7731], phi:[0.4539]] | t^2.04 + t^2.17 + t^2.6 + t^2.72 + t^2.85 + t^3.28 + t^3.4 + t^3.53 + t^3.96 + 2*t^4.08 + t^4.21 + t^4.34 + t^4.38 + t^4.51 + 2*t^4.64 + 2*t^4.77 + 2*t^4.89 + t^5.02 + t^5.19 + 2*t^5.32 + 3*t^5.45 + 2*t^5.57 + 2*t^5.7 - t^4.36/y - t^4.36*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46796 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_3\phi_1^2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_4$ | 0.6412 | 0.7805 | 0.8216 | [X:[], M:[1.1407, 0.9659, 1.0874, 0.8593], q:[0.4904, 0.3689], qb:[0.5437, 0.7719], phi:[0.4563]] | t^2.58 + t^2.74 + t^2.9 + t^3.26 + t^3.42 + t^3.58 + t^3.79 + 2*t^3.95 + t^4.11 + t^4.31 + t^4.47 + t^4.63 + t^5.16 + t^5.32 + t^5.48 + t^5.8 - t^6. - t^4.37/y - t^4.37*y | detail |