Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46792 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3^2$ + $ M_2\phi_1^2$ + $ M_5\phi_1^2$ 0.7061 0.8639 0.8173 [X:[], M:[0.8998, 1.0501, 1.0, 0.8496, 1.0501], q:[0.4974, 0.6029], qb:[0.4525, 0.5475], phi:[0.4749]] [X:[], M:[[-4, -4], [2, 2], [0, 0], [-6, -6], [2, 2]], q:[[-2, 4], [6, 0]], qb:[[0, -6], [0, 6]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_4$, $ M_1$, $ M_3$, $ q_1\tilde{q}_2$, $ M_2$, $ M_5$, $ q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1q_2^2$, $ M_4^2$, $ M_1M_4$, $ M_1^2$, $ M_1M_3$, $ M_2M_4$, $ M_4M_5$, $ M_1M_2$, $ M_1M_5$ . -3 t^2.55 + t^2.7 + t^3. + t^3.13 + 2*t^3.15 + t^3.17 + t^4.14 + t^4.27 + t^4.41 + t^4.42 + t^4.56 + t^4.59 + t^4.71 + t^4.73 + t^4.88 + t^5.04 + t^5.1 + t^5.25 + t^5.4 + 3*t^5.7 + t^5.85 - 3*t^6. + t^6.15 + t^6.27 + t^6.28 + 3*t^6.3 + t^6.32 + t^6.33 - t^6.45 + t^6.69 + t^6.82 + t^6.84 + t^6.96 + t^6.97 + t^7.11 + t^7.12 + t^7.14 + t^7.26 + t^7.27 + t^7.29 + t^7.31 + 2*t^7.41 + t^7.42 + t^7.54 + t^7.56 + t^7.58 + t^7.59 + t^7.65 + t^7.69 + t^7.71 + t^7.74 + t^7.76 + t^7.8 + t^7.84 + t^7.86 + t^7.88 + t^7.95 + t^8.03 + t^8.04 + t^8.1 + t^8.19 + t^8.21 + 2*t^8.25 + t^8.28 + 2*t^8.4 - t^8.55 + t^8.56 - 2*t^8.7 - t^8.72 + t^8.73 + t^8.82 + 3*t^8.85 + t^8.97 - t^8.98 - t^4.42/y - t^6.97/y - t^7.12/y + t^7.27/y - t^7.58/y + t^7.73/y + t^7.88/y + t^8.25/y + t^8.55/y + t^8.68/y + (3*t^8.7)/y + t^8.72/y + t^8.83/y + (2*t^8.85)/y + t^8.87/y - t^4.42*y - t^6.97*y - t^7.12*y + t^7.27*y - t^7.58*y + t^7.73*y + t^7.88*y + t^8.25*y + t^8.55*y + t^8.68*y + 3*t^8.7*y + t^8.72*y + t^8.83*y + 2*t^8.85*y + t^8.87*y t^2.55/(g1^6*g2^6) + t^2.7/(g1^4*g2^4) + t^3. + (g2^10*t^3.13)/g1^2 + 2*g1^2*g2^2*t^3.15 + (g1^6*t^3.17)/g2^6 + t^4.14/(g1*g2^13) + t^4.27/(g1^3*g2^3) + (g2^7*t^4.41)/g1^5 + t^4.42/(g1*g2) + (g2^9*t^4.56)/g1^3 + (g1^5*t^4.59)/g2^7 + (g2^11*t^4.71)/g1 + g1^3*g2^3*t^4.73 + g1^5*g2^5*t^4.88 + (g1^11*t^5.04)/g2 + t^5.1/(g1^12*g2^12) + t^5.25/(g1^10*g2^10) + t^5.4/(g1^8*g2^8) + (3*t^5.7)/(g1^4*g2^4) + t^5.85/(g1^2*g2^2) - 3*t^6. + g1^2*g2^2*t^6.15 + (g2^20*t^6.27)/g1^4 + g2^12*t^6.28 + 3*g1^4*g2^4*t^6.3 + (g1^8*t^6.32)/g2^4 + (g1^12*t^6.33)/g2^12 - g1^6*g2^6*t^6.45 + t^6.69/(g1^7*g2^19) + t^6.82/(g1^9*g2^9) + t^6.84/(g1^5*g2^17) + (g2*t^6.96)/g1^11 + t^6.97/(g1^7*g2^7) + (g2^3*t^7.11)/g1^9 + t^7.12/(g1^5*g2^5) + t^7.14/(g1*g2^13) + (g2^5*t^7.26)/g1^7 + t^7.27/(g1^3*g2^3) + (g1*t^7.29)/g2^11 + (g1^5*t^7.31)/g2^19 + (2*g2^7*t^7.41)/g1^5 + t^7.42/(g1*g2) + (g2^17*t^7.54)/g1^7 + (g2^9*t^7.56)/g1^3 + g1*g2*t^7.58 + (g1^5*t^7.59)/g2^7 + t^7.65/(g1^18*g2^18) + (g2^19*t^7.69)/g1^5 + (g2^11*t^7.71)/g1 + (g1^7*t^7.74)/g2^5 + (g1^11*t^7.76)/g2^13 + t^7.8/(g1^16*g2^16) + (g2^21*t^7.84)/g1^3 + g1*g2^13*t^7.86 + g1^5*g2^5*t^7.88 + t^7.95/(g1^14*g2^14) + g1^7*g2^7*t^8.03 + (g1^11*t^8.04)/g2 + t^8.1/(g1^12*g2^12) + g1^13*g2*t^8.19 + (g1^17*t^8.21)/g2^7 + (2*t^8.25)/(g1^10*g2^10) + t^8.28/(g1^2*g2^26) + (2*t^8.4)/(g1^8*g2^8) - t^8.55/(g1^6*g2^6) + t^8.56/(g1^2*g2^14) - (2*t^8.7)/(g1^4*g2^4) - t^8.72/g2^12 + (g1^4*t^8.73)/g2^20 + (g2^14*t^8.82)/g1^10 + (3*t^8.85)/(g1^2*g2^2) + (g2^16*t^8.97)/g1^8 - (g2^8*t^8.98)/g1^4 - t^4.42/(g1*g2*y) - t^6.97/(g1^7*g2^7*y) - t^7.12/(g1^5*g2^5*y) + t^7.27/(g1^3*g2^3*y) - (g1*g2*t^7.58)/y + (g1^3*g2^3*t^7.73)/y + (g1^5*g2^5*t^7.88)/y + t^8.25/(g1^10*g2^10*y) + t^8.55/(g1^6*g2^6*y) + (g2^4*t^8.68)/(g1^8*y) + (3*t^8.7)/(g1^4*g2^4*y) + t^8.72/(g2^12*y) + (g2^6*t^8.83)/(g1^6*y) + (2*t^8.85)/(g1^2*g2^2*y) + (g1^2*t^8.87)/(g2^10*y) - (t^4.42*y)/(g1*g2) - (t^6.97*y)/(g1^7*g2^7) - (t^7.12*y)/(g1^5*g2^5) + (t^7.27*y)/(g1^3*g2^3) - g1*g2*t^7.58*y + g1^3*g2^3*t^7.73*y + g1^5*g2^5*t^7.88*y + (t^8.25*y)/(g1^10*g2^10) + (t^8.55*y)/(g1^6*g2^6) + (g2^4*t^8.68*y)/g1^8 + (3*t^8.7*y)/(g1^4*g2^4) + (t^8.72*y)/g2^12 + (g2^6*t^8.83*y)/g1^6 + (2*t^8.85*y)/(g1^2*g2^2) + (g1^2*t^8.87*y)/g2^10


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46185 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_3^2$ + $ M_2\phi_1^2$ 0.7111 0.8727 0.8148 [X:[], M:[0.8849, 1.0576, 1.0, 0.8273], q:[0.4965, 0.6187], qb:[0.4459, 0.5541], phi:[0.4712]] t^2.48 + t^2.65 + t^2.83 + t^3. + t^3.15 + t^3.17 + t^3.19 + t^4.09 + t^4.24 + t^4.39 + t^4.41 + t^4.57 + t^4.61 + t^4.74 + t^4.76 + t^4.93 + t^4.96 + t^5.13 + t^5.14 + 2*t^5.31 + t^5.48 + 3*t^5.65 + t^5.83 + t^5.98 - 2*t^6. - t^4.41/y - t^4.41*y detail