Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46769 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{1}M_{4}$ + ${ }M_{4}M_{6}$ | 0.7195 | 0.8802 | 0.8175 | [M:[0.9749, 0.7932, 0.8434, 1.0251, 1.0909, 0.9749], q:[0.5664, 0.4588], qb:[0.6405, 0.5161], phi:[0.4546]] | [M:[[4, 0, 1], [8, -4, 1], [0, -4, -1], [-4, 0, -1], [-2, 2, 0], [4, 0, 1]], q:[[-8, 0, -1], [4, 0, 0]], qb:[[0, 4, 0], [0, 0, 1]], phi:[[1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }M_{6}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{6}$, ${ }M_{1}M_{3}$, ${ }M_{3}M_{6}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}^{2}$ | ${}$ | -4 | t^2.379 + t^2.53 + 2*t^2.925 + t^3.247 + t^3.273 + t^3.298 + t^4.116 + t^4.288 + t^4.439 + t^4.46 + t^4.611 + t^4.661 + t^4.759 + t^4.762 + t^4.833 + t^4.91 + t^4.984 + t^5.06 + t^5.207 + 2*t^5.304 + t^5.455 + t^5.652 + t^5.803 + 2*t^5.849 - 4*t^6. - t^6.151 + t^6.172 + 2*t^6.197 + t^6.222 - t^6.323 - t^6.373 + t^6.495 + t^6.496 + t^6.52 + t^6.57 + t^6.595 + t^6.647 + t^6.668 + t^6.819 + t^6.84 + t^6.969 + t^6.991 + 2*t^7.041 + t^7.138 + t^7.141 + 2*t^7.213 + t^7.289 + t^7.292 + t^7.364 + 2*t^7.385 + t^7.414 + t^7.44 + t^7.536 + 2*t^7.586 + t^7.591 + 2*t^7.684 + t^7.687 + t^7.708 + 2*t^7.758 + t^7.834 + t^7.859 + t^7.959 + t^7.985 + t^8.009 + t^8.032 + 2*t^8.131 + t^8.182 - t^8.207 + 2*t^8.229 + t^8.233 + t^8.333 - 3*t^8.379 + t^8.405 + t^8.504 - 4*t^8.53 - t^8.552 + t^8.555 + 3*t^8.577 - t^8.681 - t^8.702 + 2*t^8.727 + t^8.749 - 2*t^8.753 + 2*t^8.774 + t^8.778 - t^8.853 + t^8.875 + t^8.878 + t^8.899 + t^8.921 - 8*t^8.925 + t^8.95 - t^4.364/y - t^6.743/y - t^6.894/y - t^7.288/y + t^7.439/y + t^7.833/y + t^7.91/y + t^7.984/y + (2*t^8.304)/y + (2*t^8.455)/y + t^8.627/y + t^8.652/y + t^8.677/y + t^8.778/y + t^8.803/y + t^8.828/y + t^8.849/y - t^4.364*y - t^6.743*y - t^6.894*y - t^7.288*y + t^7.439*y + t^7.833*y + t^7.91*y + t^7.984*y + 2*t^8.304*y + 2*t^8.455*y + t^8.627*y + t^8.652*y + t^8.677*y + t^8.778*y + t^8.803*y + t^8.828*y + t^8.849*y | (g1^8*g3*t^2.379)/g2^4 + t^2.53/(g2^4*g3) + 2*g1^4*g3*t^2.925 + t^3.247/g1^8 + (g2^2*t^3.273)/g1^2 + g1^4*g2^4*t^3.298 + (g1^9*t^4.116)/g2 + (g1^5*g3*t^4.288)/g2 + t^4.439/(g1^3*g2*g3) + (g1*g3^2*t^4.46)/g2 + t^4.611/(g1^7*g2) + g1^5*g2^3*t^4.661 + (g1^16*g3^2*t^4.759)/g2^8 + t^4.762/(g1^15*g2*g3^2) + g1*g2^3*g3*t^4.833 + (g1^8*t^4.91)/g2^8 + (g2^3*t^4.984)/(g1^7*g3) + t^5.06/(g2^8*g3^2) + g1*g2^7*t^5.207 + (2*g1^12*g3^2*t^5.304)/g2^4 + (g1^4*t^5.455)/g2^4 + (g1^6*g3*t^5.652)/g2^2 + t^5.803/(g1^2*g2^2*g3) + 2*g1^8*g3^2*t^5.849 - 4*t^6. - t^6.151/(g1^8*g3^2) + (g3*t^6.172)/g1^4 + 2*g1^2*g2^2*g3*t^6.197 + g1^8*g2^4*g3*t^6.222 - t^6.323/(g1^12*g3) - (g2^4*t^6.373)/g3 + t^6.495/g1^16 + (g1^17*g3*t^6.496)/g2^5 + (g2^2*t^6.52)/g1^10 + g1^2*g2^6*t^6.57 + g1^8*g2^8*t^6.595 + (g1^9*t^6.647)/(g2^5*g3) + (g1^13*g3^2*t^6.668)/g2^5 + (g1^5*t^6.819)/g2^5 + (g1^9*g3^3*t^6.84)/g2^5 + t^6.969/(g1^3*g2^5*g3^2) + (g1*g3*t^6.991)/g2^5 + (2*g1^13*g3*t^7.041)/g2 + (g1^24*g3^3*t^7.138)/g2^12 + t^7.141/(g1^7*g2^5*g3) + (2*g1^9*g3^2*t^7.213)/g2 + (g1^16*g3*t^7.289)/g2^12 + t^7.292/(g1^15*g2^5*g3^3) + (g1*t^7.364)/g2 + (2*g1^5*g3^3*t^7.385)/g2 + g1^13*g2^3*t^7.414 + (g1^8*t^7.44)/(g2^12*g3) + (g3*t^7.536)/(g1^3*g2) + 2*g1^9*g2^3*g3*t^7.586 + t^7.591/(g2^12*g3^3) + (2*g1^20*g3^3*t^7.684)/g2^8 + t^7.687/(g1^11*g2*g3) + (g3^2*t^7.708)/(g1^7*g2) + 2*g1^5*g2^3*g3^2*t^7.758 + (g1^12*g3*t^7.834)/g2^8 + t^7.859/(g1^15*g2) + g1^9*g2^7*t^7.959 + (g1^4*t^7.985)/(g2^8*g3) + t^8.009/(g1^23*g2*g3^2) + (g1^14*g3^2*t^8.032)/g2^6 + 2*g1^5*g2^7*g3*t^8.131 + (g1^6*t^8.182)/g2^6 - (g1^12*t^8.207)/g2^4 + (2*g1^16*g3^3*t^8.229)/g2^4 + (g1^18*t^8.233)/g2^2 + t^8.333/(g1^2*g2^6*g3^2) - (3*g1^8*g3*t^8.379)/g2^4 + (g1^14*g3*t^8.405)/g2^2 + g1^5*g2^11*t^8.504 - (4*t^8.53)/(g2^4*g3) - (g1^4*g3^2*t^8.552)/g2^4 + (g1^6*t^8.555)/(g2^2*g3) + (3*g1^10*g3^2*t^8.577)/g2^2 - t^8.681/(g1^8*g2^4*g3^3) - t^8.702/(g1^4*g2^4) + (2*g1^2*t^8.727)/g2^2 + (g1^6*g3^3*t^8.749)/g2^2 - 2*g1^8*t^8.753 + 2*g1^12*g3^3*t^8.774 + g1^14*g2^2*t^8.778 - t^8.853/(g1^12*g2^4*g3^2) + (g1^25*g3^2*t^8.875)/g2^9 + t^8.878/(g1^6*g2^2*g3^2) + (g3*t^8.899)/(g1^2*g2^2) + (g1^2*g3^4*t^8.921)/g2^2 - 8*g1^4*g3*t^8.925 + g1^10*g2^2*g3*t^8.95 - (g1*t^4.364)/(g2*y) - (g1^9*g3*t^6.743)/(g2^5*y) - (g1*t^6.894)/(g2^5*g3*y) - (g1^5*g3*t^7.288)/(g2*y) + t^7.439/(g1^3*g2*g3*y) + (g1*g2^3*g3*t^7.833)/y + (g1^8*t^7.91)/(g2^8*y) + (g2^3*t^7.984)/(g1^7*g3*y) + (2*g1^12*g3^2*t^8.304)/(g2^4*y) + (2*g1^4*t^8.455)/(g2^4*y) + (g3*t^8.627)/(g2^4*y) + (g1^6*g3*t^8.652)/(g2^2*y) + (g1^12*g3*t^8.677)/y + t^8.778/(g1^8*g2^4*g3*y) + t^8.803/(g1^2*g2^2*g3*y) + (g1^4*t^8.828)/(g3*y) + (g1^8*g3^2*t^8.849)/y - (g1*t^4.364*y)/g2 - (g1^9*g3*t^6.743*y)/g2^5 - (g1*t^6.894*y)/(g2^5*g3) - (g1^5*g3*t^7.288*y)/g2 + (t^7.439*y)/(g1^3*g2*g3) + g1*g2^3*g3*t^7.833*y + (g1^8*t^7.91*y)/g2^8 + (g2^3*t^7.984*y)/(g1^7*g3) + (2*g1^12*g3^2*t^8.304*y)/g2^4 + (2*g1^4*t^8.455*y)/g2^4 + (g3*t^8.627*y)/g2^4 + (g1^6*g3*t^8.652*y)/g2^2 + g1^12*g3*t^8.677*y + (t^8.778*y)/(g1^8*g2^4*g3) + (t^8.803*y)/(g1^2*g2^2*g3) + (g1^4*t^8.828*y)/g3 + g1^8*g3^2*t^8.849*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46115 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}\phi_{1}^{2}$ + ${ }M_{1}M_{4}$ | 0.7184 | 0.8775 | 0.8187 | [M:[1.0, 0.8179, 0.8179, 1.0, 1.091], q:[0.541, 0.459], qb:[0.6411, 0.541], phi:[0.4545]] | 2*t^2.454 + 2*t^3. + t^3.246 + t^3.273 + t^3.3 + t^4.118 + 2*t^4.363 + 3*t^4.609 + t^4.664 + 3*t^4.907 + 2*t^4.91 + t^5.21 + 3*t^5.454 + 2*t^5.727 - 3*t^6. - t^4.363/y - t^4.363*y | detail |