Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46756 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{3}M_{5}$ | 0.6348 | 0.784 | 0.8097 | [X:[1.6126], M:[0.3874, 0.7117, 1.1621, 0.8379, 0.8379], q:[0.8536, 0.759], qb:[0.4347, 0.4032], phi:[0.3874]] | [X:[[0, 1]], M:[[0, -1], [0, -7], [0, -3], [0, 3], [0, 3]], q:[[1, 4], [-1, -3]], qb:[[-1, 3], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }M_{5}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{5}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }X_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}\tilde{q}_{1}^{2}$ | ${}\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$ | -2 | t^2.135 + t^2.324 + 2*t^2.514 + 2*t^3.581 + t^3.676 + 2*t^3.77 + t^4.27 + t^4.459 + 3*t^4.649 + 3*t^4.838 + 3*t^5.027 + 2*t^5.716 + 2*t^5.905 - 2*t^6. + 4*t^6.095 + t^6.189 + 4*t^6.284 + t^6.405 + t^6.594 + 3*t^6.784 + 3*t^6.973 - 2*t^7.067 + 6*t^7.162 - 2*t^7.257 + 6*t^7.351 + 6*t^7.541 + 2*t^7.851 + 2*t^8.04 - 3*t^8.135 + 4*t^8.23 - 3*t^8.324 + 4*t^8.419 - 6*t^8.514 + t^8.54 + 6*t^8.608 + t^8.729 + 6*t^8.798 + 3*t^8.918 - t^4.162/y - t^6.297/y - t^6.486/y - t^6.676/y + t^7.459/y + (3*t^7.649)/y + (3*t^7.838)/y + (2*t^8.027)/y - t^8.432/y - t^8.621/y + (2*t^8.716)/y - t^8.811/y + (4*t^8.905)/y - t^4.162*y - t^6.297*y - t^6.486*y - t^6.676*y + t^7.459*y + 3*t^7.649*y + 3*t^7.838*y + 2*t^8.027*y - t^8.432*y - t^8.621*y + 2*t^8.716*y - t^8.811*y + 4*t^8.905*y | t^2.135/g2^7 + t^2.324/g2^2 + 2*g2^3*t^2.514 + t^3.581/g1^2 + (g1^2*t^3.581)/g2 + g2^2*t^3.676 + g1^2*g2^4*t^3.77 + (g2^5*t^3.77)/g1^2 + t^4.27/g2^14 + t^4.459/g2^9 + (3*t^4.649)/g2^4 + 3*g2*t^4.838 + 3*g2^6*t^5.027 + (g1^2*t^5.716)/g2^8 + t^5.716/(g1^2*g2^7) + (g1^2*t^5.905)/g2^3 + t^5.905/(g1^2*g2^2) - 2*t^6. + 2*g1^2*g2^2*t^6.095 + (2*g2^3*t^6.095)/g1^2 + g2^5*t^6.189 + 2*g1^2*g2^7*t^6.284 + (2*g2^8*t^6.284)/g1^2 + t^6.405/g2^21 + t^6.594/g2^16 + (3*t^6.784)/g2^11 + (3*t^6.973)/g2^6 - (g1^2*t^7.067)/g2^4 - t^7.067/(g1^2*g2^3) + t^7.162/g1^4 + (g1^4*t^7.162)/g2^2 + (4*t^7.162)/g2 - g1^2*g2*t^7.257 - (g2^2*t^7.257)/g1^2 + g1^4*g2^3*t^7.351 + 4*g2^4*t^7.351 + (g2^5*t^7.351)/g1^4 + g1^4*g2^8*t^7.541 + 4*g2^9*t^7.541 + (g2^10*t^7.541)/g1^4 + (g1^2*t^7.851)/g2^15 + t^7.851/(g1^2*g2^14) + (g1^2*t^8.04)/g2^10 + t^8.04/(g1^2*g2^9) - (3*t^8.135)/g2^7 + (2*g1^2*t^8.23)/g2^5 + (2*t^8.23)/(g1^2*g2^4) - (3*t^8.324)/g2^2 + 2*g1^2*t^8.419 + (2*g2*t^8.419)/g1^2 - 6*g2^3*t^8.514 + t^8.54/g2^28 + 3*g1^2*g2^5*t^8.608 + (3*g2^6*t^8.608)/g1^2 + t^8.729/g2^23 + 3*g1^2*g2^10*t^8.798 + (3*g2^11*t^8.798)/g1^2 + (3*t^8.918)/g2^18 - t^4.162/(g2*y) - t^6.297/(g2^8*y) - t^6.486/(g2^3*y) - (g2^2*t^6.676)/y + t^7.459/(g2^9*y) + (3*t^7.649)/(g2^4*y) + (3*g2*t^7.838)/y + (2*g2^6*t^8.027)/y - t^8.432/(g2^15*y) - t^8.621/(g2^10*y) + (g1^2*t^8.716)/(g2^8*y) + t^8.716/(g1^2*g2^7*y) - t^8.811/(g2^5*y) + (2*g1^2*t^8.905)/(g2^3*y) + (2*t^8.905)/(g1^2*g2^2*y) - (t^4.162*y)/g2 - (t^6.297*y)/g2^8 - (t^6.486*y)/g2^3 - g2^2*t^6.676*y + (t^7.459*y)/g2^9 + (3*t^7.649*y)/g2^4 + 3*g2*t^7.838*y + 2*g2^6*t^8.027*y - (t^8.432*y)/g2^15 - (t^8.621*y)/g2^10 + (g1^2*t^8.716*y)/g2^8 + (t^8.716*y)/(g1^2*g2^7) - (t^8.811*y)/g2^5 + (2*g1^2*t^8.905*y)/g2^3 + (2*t^8.905*y)/(g1^2*g2^2) |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46187 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{3}M_{4}$ + ${ }\phi_{1}q_{1}q_{2}$ + ${ }M_{1}X_{1}$ | 0.6212 | 0.7607 | 0.8166 | [X:[1.6162], M:[0.3838, 0.6865, 1.1513, 0.8487], q:[0.8689, 0.7473], qb:[0.4446, 0.4041], phi:[0.3838]] | t^2.059 + t^2.303 + t^2.546 + t^3.454 + 2*t^3.576 + t^3.697 + 2*t^3.819 + t^4.119 + t^4.362 + 2*t^4.605 + 2*t^4.849 + t^5.092 + t^5.513 + 2*t^5.635 + t^5.757 + 2*t^5.878 - t^6. - t^4.151/y - t^4.151*y | detail |