Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46744 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ | 0.6903 | 0.8614 | 0.8014 | [M:[0.6811, 1.1063, 0.9718, 0.7375], q:[0.7766, 0.5423], qb:[0.4859, 0.4078], phi:[0.4469]] | [M:[[36], [-12], [22], [-8]], q:[[-3], [-33]], qb:[[11], [1]], phi:[[6]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}M_{4}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$ | ${}$ | -1 | t^2.043 + t^2.213 + t^2.681 + t^2.85 + t^2.915 + t^3.319 + t^3.553 + t^3.787 + t^4.022 + t^4.087 + t^4.191 + 2*t^4.256 + 2*t^4.425 + t^4.594 + t^4.725 + 2*t^4.894 + t^4.959 + t^5.063 + t^5.128 + 2*t^5.362 + 2*t^5.531 + t^5.597 + t^5.701 + t^5.766 + t^5.831 - t^6. + t^6.065 + t^6.13 + 2*t^6.234 + 2*t^6.299 + t^6.403 + 4*t^6.469 + 3*t^6.638 + t^6.703 + t^6.768 + t^6.807 + t^6.872 + 3*t^6.937 + t^7.002 + t^7.041 + 3*t^7.106 + t^7.171 + 2*t^7.275 + t^7.341 + 2*t^7.406 + t^7.445 + 3*t^7.575 + t^7.64 + 2*t^7.744 + 2*t^7.809 + t^7.874 + t^7.913 + t^7.978 + t^8.043 + t^8.108 + t^8.174 - t^8.213 + 3*t^8.278 + 2*t^8.343 + t^8.382 + t^8.447 + 4*t^8.512 + t^8.551 + t^8.616 + 3*t^8.681 + 2*t^8.746 + t^8.785 + t^8.811 + t^8.85 - t^8.915 + 3*t^8.98 - t^4.341/y - t^6.384/y - t^6.553/y + t^7.425/y + t^7.725/y + (2*t^7.894)/y + t^7.959/y + t^8.063/y + (2*t^8.128)/y + t^8.297/y + t^8.362/y - t^8.427/y + (2*t^8.531)/y + t^8.597/y + t^8.766/y + t^8.831/y - t^4.341*y - t^6.384*y - t^6.553*y + t^7.425*y + t^7.725*y + 2*t^7.894*y + t^7.959*y + t^8.063*y + 2*t^8.128*y + t^8.297*y + t^8.362*y - t^8.427*y + 2*t^8.531*y + t^8.597*y + t^8.766*y + t^8.831*y | g1^36*t^2.043 + t^2.213/g1^8 + g1^12*t^2.681 + t^2.85/g1^32 + g1^22*t^2.915 + t^3.319/g1^12 + t^3.553/g1^2 + g1^8*t^3.787 + g1^18*t^4.022 + g1^72*t^4.087 + t^4.191/g1^26 + 2*g1^28*t^4.256 + (2*t^4.425)/g1^16 + t^4.594/g1^60 + g1^48*t^4.725 + 2*g1^4*t^4.894 + g1^58*t^4.959 + t^5.063/g1^40 + g1^14*t^5.128 + 2*g1^24*t^5.362 + (2*t^5.531)/g1^20 + g1^34*t^5.597 + t^5.701/g1^64 + t^5.766/g1^10 + g1^44*t^5.831 - t^6. + g1^54*t^6.065 + g1^108*t^6.13 + 2*g1^10*t^6.234 + 2*g1^64*t^6.299 + t^6.403/g1^34 + 4*g1^20*t^6.469 + (3*t^6.638)/g1^24 + g1^30*t^6.703 + g1^84*t^6.768 + t^6.807/g1^68 + t^6.872/g1^14 + 3*g1^40*t^6.937 + g1^94*t^7.002 + t^7.041/g1^58 + (3*t^7.106)/g1^4 + g1^50*t^7.171 + (2*t^7.275)/g1^48 + g1^6*t^7.341 + 2*g1^60*t^7.406 + t^7.445/g1^92 + 3*g1^16*t^7.575 + g1^70*t^7.64 + (2*t^7.744)/g1^28 + 2*g1^26*t^7.809 + g1^80*t^7.874 + t^7.913/g1^72 + t^7.978/g1^18 + g1^36*t^8.043 + g1^90*t^8.108 + g1^144*t^8.174 - t^8.213/g1^8 + 3*g1^46*t^8.278 + 2*g1^100*t^8.343 + t^8.382/g1^52 + g1^2*t^8.447 + 4*g1^56*t^8.512 + t^8.551/g1^96 + t^8.616/g1^42 + 3*g1^12*t^8.681 + 2*g1^66*t^8.746 + t^8.785/g1^86 + g1^120*t^8.811 + t^8.85/g1^32 - g1^22*t^8.915 + 3*g1^76*t^8.98 - (g1^6*t^4.341)/y - (g1^42*t^6.384)/y - t^6.553/(g1^2*y) + t^7.425/(g1^16*y) + (g1^48*t^7.725)/y + (2*g1^4*t^7.894)/y + (g1^58*t^7.959)/y + t^8.063/(g1^40*y) + (2*g1^14*t^8.128)/y + t^8.297/(g1^30*y) + (g1^24*t^8.362)/y - (g1^78*t^8.427)/y + (2*t^8.531)/(g1^20*y) + (g1^34*t^8.597)/y + t^8.766/(g1^10*y) + (g1^44*t^8.831)/y - g1^6*t^4.341*y - g1^42*t^6.384*y - (t^6.553*y)/g1^2 + (t^7.425*y)/g1^16 + g1^48*t^7.725*y + 2*g1^4*t^7.894*y + g1^58*t^7.959*y + (t^8.063*y)/g1^40 + 2*g1^14*t^8.128*y + (t^8.297*y)/g1^30 + g1^24*t^8.362*y - g1^78*t^8.427*y + (2*t^8.531*y)/g1^20 + g1^34*t^8.597*y + (t^8.766*y)/g1^10 + g1^44*t^8.831*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
48200 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{3}$ | 0.6407 | 0.8088 | 0.7921 | [M:[0.8966, 1.0345, 1.1034, 0.6897], q:[0.7586, 0.3448], qb:[0.5517, 0.4138], phi:[0.4828]] | t^2.069 + t^2.276 + t^2.69 + t^2.897 + t^3.103 + t^3.31 + 2*t^3.517 + t^3.724 + t^3.931 + 2*t^4.138 + 2*t^4.345 + t^4.552 + 2*t^4.759 + 2*t^4.966 + 2*t^5.172 + 2*t^5.379 + 3*t^5.586 + 4*t^5.793 + t^6. - t^4.448/y - t^4.448*y | detail | {a: 125001/195112, c: 19725/24389, M1: 26/29, M2: 30/29, M3: 32/29, M4: 20/29, q1: 22/29, q2: 10/29, qb1: 16/29, qb2: 12/29, phi1: 14/29} |
47136 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{5}$ | 0.6695 | 0.8209 | 0.8156 | [M:[0.6862, 1.1046, 0.9749, 0.7364, 1.3138], q:[0.7762, 0.5377], qb:[0.4874, 0.4079], phi:[0.4477]] | t^2.209 + t^2.686 + t^2.837 + t^2.925 + t^3.314 + t^3.552 + t^3.791 + t^3.941 + t^4.029 + t^4.18 + t^4.268 + 2*t^4.418 + t^4.569 + t^4.895 + t^5.046 + t^5.134 + t^5.372 + 2*t^5.523 + t^5.674 + t^5.762 - t^6. - t^4.343/y - t^4.343*y | detail | |
48188 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{3}M_{5}$ | 0.6884 | 0.8584 | 0.802 | [M:[0.7083, 1.0972, 0.9884, 0.7315, 1.0116], q:[0.7743, 0.5174], qb:[0.4942, 0.4086], phi:[0.4514]] | t^2.125 + t^2.194 + t^2.708 + t^2.778 + t^3.035 + t^3.292 + t^3.549 + t^3.806 + t^4.062 + t^4.132 + t^4.25 + 2*t^4.319 + 2*t^4.389 + t^4.459 + t^4.833 + 2*t^4.903 + t^4.972 + t^5.16 + t^5.229 + 2*t^5.417 + 2*t^5.486 + t^5.556 + t^5.743 + t^5.813 - t^6. - t^4.354/y - t^4.354*y | detail | |
46806 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ | 0.6687 | 0.8378 | 0.7981 | [M:[0.8235, 1.0588, 1.0588, 0.7059], q:[0.7647, 0.4118], qb:[0.5294, 0.4118], phi:[0.4706]] | t^2.118 + 2*t^2.471 + t^2.824 + 2*t^3.176 + t^3.529 + 3*t^3.882 + 3*t^4.235 + 3*t^4.588 + 4*t^4.941 + 4*t^5.294 + 4*t^5.647 + 2*t^6. - t^4.412/y - t^4.412*y | detail | {a: 26283/39304, c: 16465/19652, M1: 14/17, M2: 18/17, M3: 18/17, M4: 12/17, q1: 13/17, q2: 7/17, qb1: 9/17, qb2: 7/17, phi1: 8/17} |
48245 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ | 0.6708 | 0.8256 | 0.8125 | [M:[0.6773, 1.1076, 0.9695, 0.7384, 1.2616], q:[0.7769, 0.5458], qb:[0.4847, 0.4077], phi:[0.4462]] | t^2.032 + t^2.677 + t^2.86 + t^2.908 + t^3.323 + t^3.554 + 2*t^3.785 + t^4.016 + t^4.064 + t^4.199 + t^4.247 + t^4.43 + t^4.613 + t^4.709 + t^4.892 + t^4.94 + 2*t^5.355 + t^5.538 + t^5.586 + t^5.721 + 2*t^5.817 - 2*t^6. - t^4.339/y - t^4.339*y | detail | |
48109 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}\phi_{1}^{2}$ | 0.6808 | 0.8454 | 0.8054 | [M:[0.6946, 1.1018, 0.98, 0.7345, 1.1018], q:[0.7755, 0.53], qb:[0.49, 0.4082], phi:[0.4491]] | t^2.084 + t^2.204 + t^2.814 + t^2.94 + 2*t^3.305 + t^3.551 + t^3.796 + t^4.042 + t^4.162 + t^4.168 + 2*t^4.287 + 2*t^4.407 + t^4.527 + t^4.898 + t^5.018 + t^5.024 + t^5.144 + 2*t^5.389 + 2*t^5.509 + t^5.629 + t^5.755 + t^5.88 - 2*t^6. - t^4.347/y - t^4.347*y | detail | |
48228 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{1}$ | 0.7098 | 0.8973 | 0.791 | [M:[0.6849, 1.105, 0.9741, 0.7367, 0.7367], q:[0.7763, 0.5389], qb:[0.487, 0.4079], phi:[0.4475]] | t^2.055 + 2*t^2.21 + t^2.685 + t^2.84 + t^2.922 + t^3.315 + t^3.553 + t^4.027 + t^4.109 + t^4.183 + 3*t^4.265 + 4*t^4.42 + t^4.576 + t^4.739 + 3*t^4.895 + t^4.977 + 2*t^5.05 + 2*t^5.132 + 2*t^5.37 + 3*t^5.525 + t^5.607 + t^5.681 + 2*t^5.763 - 2*t^6. - t^4.342/y - t^4.342*y | detail | |
48154 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ | 0.7058 | 0.8884 | 0.7944 | [M:[0.6794, 1.1069, 0.9707, 0.7379, 0.8155], q:[0.7767, 0.5439], qb:[0.4854, 0.4078], phi:[0.4466]] | t^2.038 + t^2.214 + t^2.447 + t^2.679 + t^2.855 + t^2.912 + t^3.321 + t^3.786 + t^4.019 + t^4.076 + t^4.195 + 2*t^4.252 + 2*t^4.427 + t^4.485 + t^4.603 + t^4.66 + t^4.718 + 3*t^4.893 + t^4.95 + t^5.069 + 2*t^5.126 + t^5.301 + 3*t^5.359 + 2*t^5.534 + t^5.71 + t^5.767 + t^5.824 - t^6. - t^4.34/y - t^4.34*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46267 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}\phi_{1}\tilde{q}_{2}^{2}$ | 0.6916 | 0.8641 | 0.8004 | [M:[0.6838, 1.1054, 0.9954, 0.6931], q:[0.7763, 0.5398], qb:[0.4648, 0.4298], phi:[0.4473]] | t^2.051 + t^2.079 + t^2.684 + t^2.909 + t^2.986 + t^3.316 + t^3.619 + t^3.723 + t^4.026 + t^4.103 + 2*t^4.131 + t^4.158 + t^4.251 + t^4.356 + t^4.581 + t^4.735 + t^4.763 + t^4.96 + t^4.988 + t^5.038 + t^5.065 + 2*t^5.368 + t^5.395 + t^5.593 + t^5.67 + t^5.698 + t^5.803 + t^5.818 + t^5.972 - 2*t^6. - t^4.342/y - t^4.342*y | detail |