Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46708 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ | 0.6816 | 0.8525 | 0.7995 | [X:[], M:[1.159, 1.0231, 0.841, 0.765, 0.712], q:[0.3825, 0.4585], qb:[0.5944, 0.7765], phi:[0.447]] | [X:[], M:[[1, -7], [-2, 8], [-1, 7], [2, -16], [1, -5]], q:[[1, -8], [-2, 15]], qb:[[1, 0], [0, 1]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_4$, $ M_3$, $ \phi_1^2$, $ M_2$, $ q_2\tilde{q}_1$, $ M_1$, $ \phi_1q_1^2$, $ \phi_1q_2^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_5^2$, $ \phi_1q_1\tilde{q}_1$, $ M_4M_5$, $ \phi_1q_2\tilde{q}_1$, $ M_4^2$, $ M_3M_5$, $ M_3M_4$, $ M_5\phi_1^2$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ M_4\phi_1^2$, $ M_3^2$, $ \phi_1q_2\tilde{q}_2$, $ M_2M_5$, $ M_3\phi_1^2$, $ M_5q_2\tilde{q}_1$, $ M_2M_4$, $ \phi_1^4$, $ M_4q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_1M_5$, $ M_3q_2\tilde{q}_1$, $ M_2\phi_1^2$, $ M_1M_4$, $ M_5\phi_1q_1^2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_4\phi_1q_1^2$ | . | -2 | t^2.14 + t^2.3 + t^2.52 + t^2.68 + t^3.07 + t^3.16 + t^3.48 + t^3.64 + t^4.09 + t^4.11 + 2*t^4.27 + t^4.43 + t^4.5 + t^4.59 + t^4.66 + 2*t^4.82 + t^4.91 + t^4.98 + t^5.05 + 2*t^5.21 + t^5.29 + t^5.36 + t^5.45 + t^5.61 + t^5.68 + t^5.75 + t^5.77 + t^5.84 + t^5.93 - 2*t^6. + t^6.14 + t^6.16 + t^6.23 + t^6.25 + 2*t^6.32 + 2*t^6.41 + 2*t^6.57 + t^6.62 + t^6.64 + t^6.73 + t^6.77 + 3*t^6.79 + t^6.89 - t^6.93 + 2*t^6.95 + t^7.04 + 2*t^7.11 + t^7.16 + t^7.18 + t^7.2 + t^7.25 + 3*t^7.27 + t^7.34 - t^7.41 + 2*t^7.43 + 2*t^7.5 + t^7.57 + 2*t^7.59 + 2*t^7.66 + t^7.73 + 2*t^7.75 + t^7.89 + 2*t^7.91 + t^7.98 + t^8.05 + 2*t^8.07 - 2*t^8.14 + t^8.18 + t^8.2 + t^8.23 + t^8.27 - 2*t^8.3 + t^8.36 + 2*t^8.38 + 2*t^8.43 + 2*t^8.45 - 2*t^8.52 + 3*t^8.54 + t^8.59 + 2*t^8.61 - 2*t^8.68 + 2*t^8.7 + t^8.82 + t^8.84 + 2*t^8.86 + t^8.91 + t^8.93 - t^4.34/y - t^6.48/y - t^6.64/y - t^7.02/y + t^7.27/y - t^7.41/y + t^7.43/y + (2*t^7.66)/y + (2*t^7.82)/y + t^7.98/y + t^8.05/y + (3*t^8.21)/y + t^8.29/y + t^8.36/y + t^8.45/y + t^8.59/y + t^8.68/y + t^8.75/y + t^8.77/y + t^8.84/y - t^4.34*y - t^6.48*y - t^6.64*y - t^7.02*y + t^7.27*y - t^7.41*y + t^7.43*y + 2*t^7.66*y + 2*t^7.82*y + t^7.98*y + t^8.05*y + 3*t^8.21*y + t^8.29*y + t^8.36*y + t^8.45*y + t^8.59*y + t^8.68*y + t^8.75*y + t^8.77*y + t^8.84*y | (g1*t^2.14)/g2^5 + (g1^2*t^2.3)/g2^16 + (g2^7*t^2.52)/g1 + t^2.68/g2^4 + (g2^8*t^3.07)/g1^2 + (g2^15*t^3.16)/g1 + (g1*t^3.48)/g2^7 + (g1^2*t^3.64)/g2^18 + (g2^28*t^4.09)/g1^4 + g1*g2*t^4.11 + (2*g1^2*t^4.27)/g2^10 + (g1^3*t^4.43)/g2^21 + (g2^13*t^4.5)/g1 + (g1^4*t^4.59)/g2^32 + g2^2*t^4.66 + (2*g1*t^4.82)/g2^9 + (g1^2*t^4.91)/g2^2 + (g1^2*t^4.98)/g2^20 + (g2^14*t^5.05)/g1^2 + (2*g2^3*t^5.21)/g1 + g2^10*t^5.29 + t^5.36/g2^8 + (g1*t^5.45)/g2 + (g1^2*t^5.61)/g2^12 + (g2^22*t^5.68)/g1^2 + (g2^4*t^5.75)/g1^2 + (g1^3*t^5.77)/g2^23 + (g2^11*t^5.84)/g1 + (g1^4*t^5.93)/g2^34 - 2*t^6. + (g2^16*t^6.14)/g1^4 + (g1*t^6.16)/g2^11 + (g2^23*t^6.23)/g1^3 + (g1^2*t^6.25)/g2^4 + (g1^2*t^6.32)/g2^22 + (g2^30*t^6.32)/g1^2 + (2*g1^3*t^6.41)/g2^15 + (2*g1^4*t^6.57)/g2^26 + (g2^35*t^6.62)/g1^5 + g2^8*t^6.64 + (g1^5*t^6.73)/g2^37 + (g2^24*t^6.77)/g1^4 + (3*g1*t^6.79)/g2^3 + (g1^6*t^6.89)/g2^48 - (g2^13*t^6.93)/g1^3 + (2*g1^2*t^6.95)/g2^14 + (g1^3*t^7.04)/g2^7 + (2*g1^3*t^7.11)/g2^25 + (g2^36*t^7.16)/g1^6 + (g2^9*t^7.18)/g1 + (g1^4*t^7.2)/g2^18 + (g2^43*t^7.25)/g1^5 + (2*g1^4*t^7.27)/g2^36 + g2^16*t^7.27 + t^7.34/g2^2 - (g2^32*t^7.41)/g1^4 + 2*g1*g2^5*t^7.43 + (2*g1*t^7.5)/g2^13 + (g2^21*t^7.57)/g1^3 + (2*g1^2*t^7.59)/g2^6 + (g1^2*t^7.66)/g2^24 + (g2^28*t^7.66)/g1^2 + (g2^10*t^7.73)/g1^2 + (2*g1^3*t^7.75)/g2^17 + t^7.89/(g1*g2) + (2*g1^4*t^7.91)/g2^28 + g2^6*t^7.98 + t^8.05/g2^12 + (g1^5*t^8.07)/g2^39 + g1*g2^13*t^8.07 - (2*g1*t^8.14)/g2^5 + (g2^56*t^8.18)/g1^8 + (g2^29*t^8.2)/g1^3 + (g1^6*t^8.23)/g2^50 + (g2^11*t^8.27)/g1^3 - (2*g1^2*t^8.3)/g2^16 + (g2^18*t^8.36)/g1^2 + (2*g1^3*t^8.38)/g2^9 + (2*t^8.43)/g1^2 + (g1^3*t^8.45)/g2^27 + (g2^25*t^8.45)/g1 - (2*g2^7*t^8.52)/g1 + (3*g1^4*t^8.54)/g2^20 + (g2^41*t^8.59)/g1^5 + (g1^4*t^8.61)/g2^38 + g2^14*t^8.61 - (2*t^8.68)/g2^4 + (2*g1^5*t^8.7)/g2^31 + (g2^12*t^8.82)/g1^4 + (g2^37*t^8.84)/g1^3 + (2*g1^6*t^8.86)/g2^42 + (g2^19*t^8.91)/g1^3 + (g1^2*t^8.93)/g2^8 - t^4.34/(g2^2*y) - (g1*t^6.48)/(g2^7*y) - (g1^2*t^6.64)/(g2^18*y) - t^7.02/(g2^6*y) + (g1^2*t^7.27)/(g2^10*y) - (g2^6*t^7.41)/(g1^2*y) + (g1^3*t^7.43)/(g2^21*y) + (2*g2^2*t^7.66)/y + (2*g1*t^7.82)/(g2^9*y) + (g1^2*t^7.98)/(g2^20*y) + (g2^14*t^8.05)/(g1^2*y) + (3*g2^3*t^8.21)/(g1*y) + (g2^10*t^8.29)/y + t^8.36/(g2^8*y) + (g1*t^8.45)/(g2*y) + (g2^15*t^8.59)/(g1^3*y) + (g2^22*t^8.68)/(g1^2*y) + (g2^4*t^8.75)/(g1^2*y) + (g1^3*t^8.77)/(g2^23*y) + (g2^11*t^8.84)/(g1*y) - (t^4.34*y)/g2^2 - (g1*t^6.48*y)/g2^7 - (g1^2*t^6.64*y)/g2^18 - (t^7.02*y)/g2^6 + (g1^2*t^7.27*y)/g2^10 - (g2^6*t^7.41*y)/g1^2 + (g1^3*t^7.43*y)/g2^21 + 2*g2^2*t^7.66*y + (2*g1*t^7.82*y)/g2^9 + (g1^2*t^7.98*y)/g2^20 + (g2^14*t^8.05*y)/g1^2 + (3*g2^3*t^8.21*y)/g1 + g2^10*t^8.29*y + (t^8.36*y)/g2^8 + (g1*t^8.45*y)/g2 + (g2^15*t^8.59*y)/g1^3 + (g2^22*t^8.68*y)/g1^2 + (g2^4*t^8.75*y)/g1^2 + (g1^3*t^8.77*y)/g2^23 + (g2^11*t^8.84*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
48292 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_1M_6$ | 0.6955 | 0.8765 | 0.7936 | [X:[], M:[1.1646, 1.013, 0.8354, 0.7766, 0.7172, 0.8354], q:[0.3883, 0.4471], qb:[0.5987, 0.7763], phi:[0.4474]] | t^2.15 + t^2.33 + 2*t^2.51 + t^2.68 + t^3.04 + t^3.14 + t^3.67 + t^4.02 + t^4.13 + 2*t^4.3 + 2*t^4.48 + 3*t^4.66 + 3*t^4.84 + t^4.93 + 4*t^5.01 + 3*t^5.19 + t^5.29 + t^5.37 + t^5.47 + t^5.55 + 2*t^5.64 + t^5.72 + t^5.82 - 2*t^6. - t^4.34/y - t^4.34*y | detail | |
47153 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_3q_2\tilde{q}_1$ | 0.6767 | 0.8464 | 0.7996 | [X:[], M:[1.143, 0.9996, 0.857, 0.7144, 0.7144], q:[0.3572, 0.4998], qb:[0.6431, 0.7857], phi:[0.4285]] | 2*t^2.14 + 2*t^2.57 + t^3. + 3*t^3.43 + t^4.28 + 5*t^4.29 + 5*t^4.71 + 5*t^5.14 + 6*t^5.57 + 3*t^6. - t^4.29/y - t^4.29*y | detail | |
48307 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_4M_6$ | 0.6637 | 0.8211 | 0.8083 | [X:[], M:[1.168, 1.0146, 0.832, 0.7862, 0.7178, 1.2138], q:[0.3931, 0.4389], qb:[0.5922, 0.7749], phi:[0.4502]] | t^2.15 + t^2.5 + t^2.7 + t^3.04 + t^3.09 + t^3.5 + t^3.64 + t^3.71 + t^3.98 + t^4.1 + 2*t^4.31 + t^4.44 + t^4.65 + t^4.85 + t^4.9 + t^4.99 + 2*t^5.2 + t^5.25 + t^5.59 + t^5.66 + t^5.75 + 2*t^5.79 - 2*t^6. - t^4.35/y - t^4.35*y | detail | |
48217 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_4\phi_1q_1^2$ | 0.6814 | 0.8523 | 0.7995 | [X:[], M:[1.1632, 1.0209, 0.8368, 0.7755, 0.7141], q:[0.3877, 0.4491], qb:[0.5914, 0.7755], phi:[0.4491]] | t^2.14 + t^2.33 + t^2.51 + t^2.69 + t^3.06 + t^3.12 + t^3.49 + t^3.67 + t^4.04 + t^4.1 + 2*t^4.28 + 2*t^4.47 + 2*t^4.65 + 2*t^4.84 + t^4.9 + 2*t^5.02 + 2*t^5.2 + t^5.26 + t^5.39 + t^5.45 + 2*t^5.63 + t^5.76 + 2*t^5.82 - t^6. - t^4.35/y - t^4.35*y | detail | |
47280 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_4^2$ | 0.6087 | 0.7781 | 0.7823 | [X:[], M:[1.2578, 0.9373, 0.7422, 1.0, 0.7735], q:[0.5, 0.2422], qb:[0.5627, 0.7578], phi:[0.4843]] | t^2.23 + t^2.32 + t^2.41 + t^2.81 + 2*t^2.91 + t^3. + t^3.77 + t^3.87 + t^3.96 + 2*t^4.45 + t^4.55 + 3*t^4.64 + t^4.74 + 2*t^4.83 + 3*t^5.13 + 3*t^5.23 + 3*t^5.32 + t^5.41 + t^5.62 + 2*t^5.72 + 3*t^5.81 + t^5.91 - 2*t^6. - t^4.45/y - t^4.45*y | detail | |
47041 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_5\phi_1q_1^2$ | 0.6779 | 0.8482 | 0.7993 | [X:[], M:[1.1823, 0.9951, 0.8177, 0.8177, 0.7291], q:[0.4089, 0.4089], qb:[0.596, 0.7734], phi:[0.4532]] | t^2.19 + 2*t^2.45 + t^2.72 + t^2.99 + t^3.01 + t^3.55 + 2*t^3.81 + t^4.11 + 3*t^4.37 + 2*t^4.64 + 4*t^4.91 + t^4.94 + 3*t^5.17 + t^5.2 + t^5.44 + 2*t^5.47 + t^5.7 + 2*t^5.73 + t^5.97 - t^4.36/y - t^4.36*y | detail | {a: 93927043/138556848, c: 58758829/69278424, M1: 6026/5097, M2: 5072/5097, M3: 4168/5097, M4: 4168/5097, M5: 3716/5097, q1: 2084/5097, q2: 2084/5097, qb1: 3038/5097, qb2: 1314/1699, phi1: 770/1699} |
47066 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_5q_2\tilde{q}_1$ | 0.6598 | 0.8251 | 0.7997 | [X:[], M:[1.1553, 0.8894, 0.8447, 0.7106, 0.7553], q:[0.3553, 0.4894], qb:[0.7553, 0.8], phi:[0.4]] | t^2.13 + t^2.27 + t^2.4 + t^2.53 + t^2.67 + t^3.33 + t^3.47 + t^3.73 + t^4.14 + t^4.26 + t^4.4 + 3*t^4.53 + 3*t^4.67 + 2*t^4.8 + 3*t^4.93 + 2*t^5.07 + t^5.34 + t^5.46 + t^5.6 + 3*t^5.73 + 2*t^5.87 - t^6. - t^4.2/y - t^4.2*y | detail | |
47204 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_1q_2$ + $ M_6\phi_1^2$ | 0.6726 | 0.8389 | 0.8018 | [X:[], M:[1.1599, 1.0455, 0.8401, 0.775, 0.7048, 1.0898], q:[0.3875, 0.4526], qb:[0.567, 0.7724], phi:[0.4551]] | t^2.11 + t^2.32 + t^2.52 + t^3.06 + t^3.14 + t^3.27 + t^3.48 + t^3.69 + t^4.02 + t^4.08 + 2*t^4.23 + t^4.42 + t^4.44 + t^4.63 + t^4.65 + t^4.77 + t^4.85 + t^5.04 + t^5.17 + t^5.25 + 2*t^5.38 + t^5.58 + 2*t^5.59 + t^5.79 + t^5.8 - 2*t^6. - t^4.37/y - t^4.37*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46292 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ \phi_1\tilde{q}_2^2$ | 0.6613 | 0.8142 | 0.8122 | [X:[], M:[1.1609, 1.0162, 0.8391, 0.7677], q:[0.3838, 0.4553], qb:[0.6, 0.777], phi:[0.446]] | t^2.3 + t^2.52 + t^2.68 + t^3.05 + t^3.17 + t^3.48 + t^3.64 + t^3.86 + t^4.07 + t^4.13 + t^4.29 + t^4.5 + t^4.61 + t^4.82 + t^4.94 + t^4.98 + t^5.03 + t^5.19 + t^5.35 + t^5.47 + t^5.68 + t^5.72 + t^5.84 + t^5.94 - 2*t^6. - t^4.34/y - t^4.34*y | detail |