Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46676 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1^4$ + $ \phi_1\tilde{q}_1^2$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ | 0.6868 | 0.8944 | 0.7679 | [X:[], M:[1.1389, 0.821, 0.8179, 0.7222, 0.679], q:[0.429, 0.4321], qb:[0.75, 0.3889], phi:[0.5]] | [X:[], M:[[0, 1], [1, 1], [-1, 0], [0, -2], [-1, -1]], q:[[-1, -1], [1, 0]], qb:[[0, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ M_4$, $ M_3$, $ q_1\tilde{q}_2$, $ M_2$, $ q_2\tilde{q}_2$, $ \phi_1^2$, $ M_1$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_2$, $ M_5^2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_2^2$, $ M_4M_5$, $ M_4^2$, $ M_3M_5$, $ M_5q_1\tilde{q}_2$, $ M_2M_5$, $ M_5q_2\tilde{q}_2$, $ M_3M_4$, $ M_4q_1\tilde{q}_2$, $ M_2M_4$, $ M_4q_2\tilde{q}_2$, $ M_3^2$, $ M_3q_1\tilde{q}_2$, $ q_1^2\tilde{q}_2^2$, $ M_2M_3$, $ M_3q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ M_2^2$, $ M_2q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_5\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ M_4\phi_1^2$, $ M_1M_5$, $ M_3\phi_1^2$, $ \phi_1^2q_1\tilde{q}_2$, $ M_5\tilde{q}_1\tilde{q}_2$, $ M_2\phi_1^2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1M_4$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_1M_3$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_1\tilde{q}_2^2$, $ M_1M_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$ | . | -3 | t^2.04 + t^2.17 + 2*t^2.45 + 2*t^2.46 + t^3. + 2*t^3.42 + t^3.95 + 2*t^4.07 + t^4.08 + t^4.09 + t^4.2 + t^4.33 + 2*t^4.49 + 2*t^4.5 + 2*t^4.62 + 2*t^4.63 + 3*t^4.91 + 4*t^4.92 + 3*t^4.93 + t^5.04 + t^5.17 + 4*t^5.45 + 2*t^5.46 + 2*t^5.58 + 3*t^5.87 + 3*t^5.88 - 3*t^6. - t^6.01 + 2*t^6.11 + t^6.12 + 2*t^6.24 + t^6.25 + t^6.26 + t^6.37 + 2*t^6.41 + 2*t^6.42 + t^6.5 + 4*t^6.53 + 4*t^6.54 + 2*t^6.55 + 2*t^6.56 + 2*t^6.66 + 2*t^6.67 + 2*t^6.79 + 2*t^6.8 + 2*t^6.83 + 3*t^6.94 + 3*t^6.95 + t^6.96 + 4*t^7.07 + 3*t^7.08 + 3*t^7.09 + t^7.2 + t^7.33 + 4*t^7.36 + 6*t^7.37 + 4*t^7.38 + 4*t^7.39 + 4*t^7.49 + 2*t^7.62 + 2*t^7.75 + 6*t^7.91 + 5*t^7.92 + 2*t^7.93 + t^8.03 - t^8.04 + t^8.05 + 3*t^8.15 + t^8.16 - 2*t^8.17 + t^8.19 + 2*t^8.28 + t^8.29 + 4*t^8.32 + 4*t^8.33 + 4*t^8.34 + 2*t^8.41 + t^8.42 + t^8.43 - 6*t^8.45 - 8*t^8.46 - 2*t^8.47 + t^8.54 + 4*t^8.56 + 4*t^8.57 + t^8.67 + 4*t^8.69 + 4*t^8.7 + 2*t^8.71 + 2*t^8.72 + 2*t^8.82 + 2*t^8.83 + 3*t^8.86 + 5*t^8.87 + 2*t^8.88 + 2*t^8.95 + 2*t^8.96 + 6*t^8.98 + 5*t^8.99 - t^4.5/y - t^6.54/y - t^6.67/y - t^6.95/y - t^6.96/y + t^7.08/y + t^7.2/y + (2*t^7.49)/y + (2*t^7.5)/y + (2*t^7.62)/y + (2*t^7.63)/y + t^7.91/y + (3*t^7.92)/y + t^7.93/y + (2*t^8.04)/y + t^8.05/y + t^8.17/y + t^8.33/y + (4*t^8.45)/y + (3*t^8.46)/y - t^8.57/y + (2*t^8.58)/y - t^8.7/y - t^8.83/y + (4*t^8.87)/y + (4*t^8.88)/y - t^4.5*y - t^6.54*y - t^6.67*y - t^6.95*y - t^6.96*y + t^7.08*y + t^7.2*y + 2*t^7.49*y + 2*t^7.5*y + 2*t^7.62*y + 2*t^7.63*y + t^7.91*y + 3*t^7.92*y + t^7.93*y + 2*t^8.04*y + t^8.05*y + t^8.17*y + t^8.33*y + 4*t^8.45*y + 3*t^8.46*y - t^8.57*y + 2*t^8.58*y - t^8.7*y - t^8.83*y + 4*t^8.87*y + 4*t^8.88*y | t^2.04/(g1*g2) + t^2.17/g2^2 + (2*t^2.45)/g1 + 2*g1*g2*t^2.46 + t^3. + 2*g2*t^3.42 + t^3.95/g1 + (2*t^4.07)/(g1^2*g2^2) + t^4.08/g2 + g1^2*t^4.09 + t^4.2/(g1*g2^3) + t^4.33/g2^4 + (2*t^4.49)/(g1^2*g2) + 2*t^4.5 + (2*t^4.62)/(g1*g2^2) + (2*g1*t^4.63)/g2 + (3*t^4.91)/g1^2 + 4*g2*t^4.92 + 3*g1^2*g2^2*t^4.93 + t^5.04/(g1*g2) + t^5.17/g2^2 + (4*t^5.45)/g1 + 2*g1*g2*t^5.46 + (2*t^5.58)/g2 + (3*g2*t^5.87)/g1 + 3*g1*g2^2*t^5.88 - 3*t^6. - g1^2*g2*t^6.01 + (2*t^6.11)/(g1^3*g2^3) + t^6.12/(g1*g2^2) + (2*t^6.24)/(g1^2*g2^4) + t^6.25/g2^3 + (g1^2*t^6.26)/g2^2 + t^6.37/(g1*g2^5) + (2*t^6.41)/g1^2 + 2*g2*t^6.42 + t^6.5/g2^6 + (4*t^6.53)/(g1^3*g2^2) + (4*t^6.54)/(g1*g2) + 2*g1*t^6.55 + 2*g1^3*g2*t^6.56 + (2*t^6.66)/(g1^2*g2^3) + (2*t^6.67)/g2^2 + (2*t^6.79)/(g1*g2^4) + (2*g1*t^6.8)/g2^3 + 2*g2^2*t^6.83 + (3*t^6.94)/(g1^3*g2) + (3*t^6.95)/g1 + g1*g2*t^6.96 + (4*t^7.07)/(g1^2*g2^2) + (3*t^7.08)/g2 + 3*g1^2*t^7.09 + t^7.2/(g1*g2^3) + t^7.33/g2^4 + (4*t^7.36)/g1^3 + (6*g2*t^7.37)/g1 + 4*g1*g2^2*t^7.38 + 4*g1^3*g2^3*t^7.39 + (4*t^7.49)/(g1^2*g2) + (2*t^7.62)/(g1*g2^2) + (2*t^7.75)/g2^3 + (6*t^7.91)/g1^2 + 5*g2*t^7.92 + 2*g1^2*g2^2*t^7.93 + t^8.03/(g1^3*g2^2) - t^8.04/(g1*g2) + g1*t^8.05 + (3*t^8.15)/(g1^4*g2^4) + t^8.16/(g1^2*g2^3) - (2*t^8.17)/g2^2 + g1^4*t^8.19 + (2*t^8.28)/(g1^3*g2^5) + t^8.29/(g1*g2^4) + (4*g2*t^8.32)/g1^2 + 4*g2^2*t^8.33 + 4*g1^2*g2^3*t^8.34 + (2*t^8.41)/(g1^2*g2^6) + t^8.42/g2^5 + (g1^2*t^8.43)/g2^4 - (6*t^8.45)/g1 - 8*g1*g2*t^8.46 - 2*g1^3*g2^2*t^8.47 + t^8.54/(g1*g2^7) + (4*t^8.56)/(g1^4*g2^3) + (4*t^8.57)/(g1^2*g2^2) + t^8.67/g2^8 + (4*t^8.69)/(g1^3*g2^4) + (4*t^8.7)/(g1*g2^3) + (2*g1*t^8.71)/g2^2 + (2*g1^3*t^8.72)/g2 + (2*t^8.82)/(g1^2*g2^5) + (2*t^8.83)/g2^4 + (3*t^8.86)/g1^3 + (5*g2*t^8.87)/g1 + 2*g1*g2^2*t^8.88 + (2*t^8.95)/(g1*g2^6) + (2*g1*t^8.96)/g2^5 + (6*t^8.98)/(g1^4*g2^2) + (5*t^8.99)/(g1^2*g2) - t^4.5/y - t^6.54/(g1*g2*y) - t^6.67/(g2^2*y) - t^6.95/(g1*y) - (g1*g2*t^6.96)/y + t^7.08/(g2*y) + t^7.2/(g1*g2^3*y) + (2*t^7.49)/(g1^2*g2*y) + (2*t^7.5)/y + (2*t^7.62)/(g1*g2^2*y) + (2*g1*t^7.63)/(g2*y) + t^7.91/(g1^2*y) + (3*g2*t^7.92)/y + (g1^2*g2^2*t^7.93)/y + (2*t^8.04)/(g1*g2*y) + (g1*t^8.05)/y + t^8.17/(g2^2*y) + (g2^2*t^8.33)/y + (4*t^8.45)/(g1*y) + (3*g1*g2*t^8.46)/y - t^8.57/(g1^2*g2^2*y) + (2*t^8.58)/(g2*y) - t^8.7/(g1*g2^3*y) - t^8.83/(g2^4*y) + (4*g2*t^8.87)/(g1*y) + (4*g1*g2^2*t^8.88)/y - t^4.5*y - (t^6.54*y)/(g1*g2) - (t^6.67*y)/g2^2 - (t^6.95*y)/g1 - g1*g2*t^6.96*y + (t^7.08*y)/g2 + (t^7.2*y)/(g1*g2^3) + (2*t^7.49*y)/(g1^2*g2) + 2*t^7.5*y + (2*t^7.62*y)/(g1*g2^2) + (2*g1*t^7.63*y)/g2 + (t^7.91*y)/g1^2 + 3*g2*t^7.92*y + g1^2*g2^2*t^7.93*y + (2*t^8.04*y)/(g1*g2) + g1*t^8.05*y + (t^8.17*y)/g2^2 + g2^2*t^8.33*y + (4*t^8.45*y)/g1 + 3*g1*g2*t^8.46*y - (t^8.57*y)/(g1^2*g2^2) + (2*t^8.58*y)/g2 - (t^8.7*y)/(g1*g2^3) - (t^8.83*y)/g2^4 + (4*g2*t^8.87*y)/g1 + 4*g1*g2^2*t^8.88*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46204 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_2\tilde{q}_1$ + $ \phi_1^4$ + $ \phi_1\tilde{q}_1^2$ + $ M_4\phi_1\tilde{q}_2^2$ | 0.666 | 0.8535 | 0.7803 | [X:[], M:[1.1382, 0.8191, 0.8191, 0.7236], q:[0.4309, 0.4309], qb:[0.75, 0.3882], phi:[0.5]] | t^2.17 + 4*t^2.46 + t^3. + 2*t^3.41 + 2*t^3.96 + 3*t^4.09 + t^4.34 + 4*t^4.63 + 10*t^4.91 + t^5.17 + 4*t^5.46 + 2*t^5.59 + 6*t^5.87 - 5*t^6. - t^4.5/y - t^4.5*y | detail |