Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46661 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_2$ + $ M_4\phi_1^2$ 0.6218 0.8242 0.7544 [X:[], M:[0.9205, 0.9205, 0.6988, 0.9205], q:[0.7301, 0.3494], qb:[0.3494, 0.412], phi:[0.5398]] [X:[], M:[[4], [4], [-10], [4]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_1$, $ M_2$, $ M_4$, $ q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_3^2$, $ M_3q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_3q_2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_1M_3$, $ M_2M_3$, $ M_3M_4$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ M_1M_4$, $ M_2M_4$, $ M_4^2$, $ M_3q_1\tilde{q}_2$, $ q_1q_2\tilde{q}_2^2$, $ q_1\tilde{q}_1\tilde{q}_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ M_3\phi_1\tilde{q}_1^2$, $ \phi_1q_2^2\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$ $\phi_1q_2^3\tilde{q}_2$, $ M_3\phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_2^2\tilde{q}_1\tilde{q}_2$, $ 2\phi_1q_2\tilde{q}_1^2\tilde{q}_2$, $ \phi_1\tilde{q}_1^3\tilde{q}_2$ 1 2*t^2.1 + 2*t^2.28 + 3*t^2.76 + t^3.43 + 3*t^3.72 + t^3.9 + t^4.09 + 3*t^4.19 + 4*t^4.38 + 3*t^4.57 + 6*t^4.86 + 6*t^5.05 + 7*t^5.52 + 2*t^5.71 + 4*t^5.81 + t^6. + 4*t^6.19 + 4*t^6.29 + 2*t^6.38 + 10*t^6.48 + 6*t^6.66 + 7*t^6.85 + 6*t^6.95 + 9*t^7.14 + 8*t^7.33 + 3*t^7.43 + t^7.52 + 8*t^7.62 + 12*t^7.81 + 5*t^7.91 + 4*t^7.99 - 3*t^8.1 + t^8.18 + 9*t^8.28 + 5*t^8.39 + 7*t^8.47 + 10*t^8.57 + 3*t^8.66 - 2*t^8.76 + 11*t^8.95 - t^4.62/y - t^6.72/y + t^7.19/y + (2*t^7.38)/y + t^7.57/y + (8*t^7.86)/y + (6*t^8.05)/y + (6*t^8.52)/y + (2*t^8.71)/y + (5*t^8.81)/y - t^4.62*y - t^6.72*y + t^7.19*y + 2*t^7.38*y + t^7.57*y + 8*t^7.86*y + 6*t^8.05*y + 6*t^8.52*y + 2*t^8.71*y + 5*t^8.81*y (2*t^2.1)/g1^10 + 2*g1^12*t^2.28 + 3*g1^4*t^2.76 + g1^18*t^3.43 + (3*t^3.72)/g1^12 + g1^10*t^3.9 + g1^32*t^4.09 + (3*t^4.19)/g1^20 + 4*g1^2*t^4.38 + 3*g1^24*t^4.57 + (6*t^4.86)/g1^6 + 6*g1^16*t^5.05 + 7*g1^8*t^5.52 + 2*g1^30*t^5.71 + (4*t^5.81)/g1^22 + t^6. + 4*g1^22*t^6.19 + (4*t^6.29)/g1^30 + 2*g1^44*t^6.38 + (10*t^6.48)/g1^8 + 6*g1^14*t^6.66 + 7*g1^36*t^6.85 + (6*t^6.95)/g1^16 + 9*g1^6*t^7.14 + 8*g1^28*t^7.33 + (3*t^7.43)/g1^24 + g1^50*t^7.52 + (8*t^7.62)/g1^2 + 12*g1^20*t^7.81 + (5*t^7.91)/g1^32 + 4*g1^42*t^7.99 - (3*t^8.1)/g1^10 + g1^64*t^8.18 + 9*g1^12*t^8.28 + (5*t^8.39)/g1^40 + 7*g1^34*t^8.47 + (10*t^8.57)/g1^18 + 3*g1^56*t^8.66 - 2*g1^4*t^8.76 + 11*g1^26*t^8.95 - t^4.62/(g1^2*y) - t^6.72/(g1^12*y) + t^7.19/(g1^20*y) + (2*g1^2*t^7.38)/y + (g1^24*t^7.57)/y + (8*t^7.86)/(g1^6*y) + (6*g1^16*t^8.05)/y + (6*g1^8*t^8.52)/y + (2*g1^30*t^8.71)/y + (5*t^8.81)/(g1^22*y) - (t^4.62*y)/g1^2 - (t^6.72*y)/g1^12 + (t^7.19*y)/g1^20 + 2*g1^2*t^7.38*y + g1^24*t^7.57*y + (8*t^7.86*y)/g1^6 + 6*g1^16*t^8.05*y + 6*g1^8*t^8.52*y + 2*g1^30*t^8.71*y + (5*t^8.81*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47093 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_2$ + $ M_4\phi_1^2$ + $ M_5\phi_1\tilde{q}_1\tilde{q}_2$ 0.6424 0.8636 0.7438 [X:[], M:[0.9213, 0.9213, 0.6967, 0.9213, 0.6967], q:[0.7303, 0.3483], qb:[0.3483, 0.4157], phi:[0.5393]] 3*t^2.09 + 2*t^2.29 + 3*t^2.76 + t^3.44 + 3*t^3.71 + t^4.11 + 6*t^4.18 + 6*t^4.38 + 3*t^4.58 + 9*t^4.85 + 6*t^5.06 + 8*t^5.53 + 2*t^5.73 + 7*t^5.8 - t^6. - t^4.62/y - t^4.62*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46284 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1^2$ + $ M_3\phi_1q_2\tilde{q}_2$ 0.6146 0.8118 0.7571 [X:[], M:[0.9224, 0.9224, 0.6941], q:[0.7306, 0.347], qb:[0.347, 0.4201], phi:[0.5388]] 2*t^2.08 + 2*t^2.3 + 2*t^2.77 + t^3.23 + t^3.45 + 3*t^3.7 + t^3.92 + t^4.14 + 3*t^4.16 + 4*t^4.38 + 3*t^4.6 + 4*t^4.85 + 4*t^5.07 + 2*t^5.32 + 6*t^5.53 + 2*t^5.75 + 4*t^5.78 + 3*t^6. - t^4.62/y - t^4.62*y detail