Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46657 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}\phi_{1}^{2}$ 0.6822 0.8481 0.8045 [M:[0.6938, 1.1021, 0.6938, 1.1021], q:[0.7755, 0.5307], qb:[0.4693, 0.4286], phi:[0.449]] [M:[[-12], [4], [-12], [4]], q:[[1], [11]], qb:[[-11], [7]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }M_{4}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$ ${}$ -2 2*t^2.081 + t^2.878 + t^3. + 2*t^3.306 + t^3.612 + t^3.735 + t^4.041 + 4*t^4.163 + t^4.225 + t^4.347 + t^4.531 + 2*t^4.959 + 2*t^5.081 + 4*t^5.388 + t^5.694 + t^5.756 + t^5.816 - 2*t^6. + t^6.122 + t^6.184 + 6*t^6.244 + 2*t^6.306 + t^6.428 + t^6.49 + 5*t^6.612 + t^6.919 + 4*t^7.041 + t^7.103 + 3*t^7.163 + t^7.347 + t^7.409 + 7*t^7.469 + t^7.531 + 2*t^7.775 + 3*t^7.837 + 2*t^7.897 - 4*t^8.081 + 2*t^8.204 + t^8.265 + 9*t^8.326 + 3*t^8.388 + 2*t^8.51 + t^8.572 + t^8.634 + 8*t^8.694 + t^8.756 - 2*t^8.878 - t^4.347/y - (2*t^6.428)/y + t^7.041/y + t^7.163/y - t^7.653/y + (2*t^7.959)/y + (2*t^8.081)/y + (2*t^8.265)/y + (4*t^8.388)/y - (3*t^8.51)/y + (2*t^8.694)/y + (2*t^8.816)/y + t^8.878/y - t^4.347*y - 2*t^6.428*y + t^7.041*y + t^7.163*y - t^7.653*y + 2*t^7.959*y + 2*t^8.081*y + 2*t^8.265*y + 4*t^8.388*y - 3*t^8.51*y + 2*t^8.694*y + 2*t^8.816*y + t^8.878*y (2*t^2.081)/g1^12 + g1^18*t^2.878 + t^3. + 2*g1^4*t^3.306 + g1^8*t^3.612 + t^3.735/g1^10 + t^4.041/g1^6 + (4*t^4.163)/g1^24 + g1^16*t^4.225 + t^4.347/g1^2 + g1^20*t^4.531 + 2*g1^6*t^4.959 + (2*t^5.081)/g1^12 + (4*t^5.388)/g1^8 + t^5.694/g1^4 + g1^36*t^5.756 + t^5.816/g1^22 - 2*t^6. + t^6.122/g1^18 + g1^22*t^6.184 + (6*t^6.244)/g1^36 + 2*g1^4*t^6.306 + t^6.428/g1^14 + g1^26*t^6.49 + 5*g1^8*t^6.612 + g1^12*t^6.919 + (4*t^7.041)/g1^6 + g1^34*t^7.103 + (3*t^7.163)/g1^24 + t^7.347/g1^2 + g1^38*t^7.409 + (7*t^7.469)/g1^20 + g1^20*t^7.531 + (2*t^7.775)/g1^16 + 3*g1^24*t^7.837 + (2*t^7.897)/g1^34 - (4*t^8.081)/g1^12 + (2*t^8.204)/g1^30 + g1^10*t^8.265 + (9*t^8.326)/g1^48 + (3*t^8.388)/g1^8 + (2*t^8.51)/g1^26 + g1^14*t^8.572 + g1^54*t^8.634 + (8*t^8.694)/g1^4 + g1^36*t^8.756 - 2*g1^18*t^8.878 - t^4.347/(g1^2*y) - (2*t^6.428)/(g1^14*y) + t^7.041/(g1^6*y) + t^7.163/(g1^24*y) - (g1^2*t^7.653)/y + (2*g1^6*t^7.959)/y + (2*t^8.081)/(g1^12*y) + (2*g1^10*t^8.265)/y + (4*t^8.388)/(g1^8*y) - (3*t^8.51)/(g1^26*y) + (2*t^8.694)/(g1^4*y) + (2*t^8.816)/(g1^22*y) + (g1^18*t^8.878)/y - (t^4.347*y)/g1^2 - (2*t^6.428*y)/g1^14 + (t^7.041*y)/g1^6 + (t^7.163*y)/g1^24 - g1^2*t^7.653*y + 2*g1^6*t^7.959*y + (2*t^8.081*y)/g1^12 + 2*g1^10*t^8.265*y + (4*t^8.388*y)/g1^8 - (3*t^8.51*y)/g1^26 + (2*t^8.694*y)/g1^4 + (2*t^8.816*y)/g1^22 + g1^18*t^8.878*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47099 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ + ${ }M_{4}\phi_{1}^{2}$ + ${ }M_{5}q_{1}\tilde{q}_{2}$ 0.6992 0.8783 0.796 [M:[0.6856, 1.1048, 0.6856, 1.1048, 0.7904], q:[0.7762, 0.5382], qb:[0.4618, 0.4334], phi:[0.4476]] 2*t^2.057 + t^2.371 + t^2.915 + t^3. + 2*t^3.314 + t^3.714 + t^4.028 + 4*t^4.113 + t^4.258 + t^4.343 + 2*t^4.428 + t^4.572 + t^4.742 + 2*t^4.972 + 2*t^5.057 + t^5.286 + 5*t^5.371 + t^5.686 + t^5.771 + t^5.83 - 2*t^6. - t^4.343/y - t^4.343*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46165 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ 0.6916 0.8641 0.8004 [M:[0.6876, 1.1041, 0.6876], q:[0.776, 0.5363], qb:[0.4637, 0.4322], phi:[0.4479]] 2*t^2.063 + t^2.688 + t^2.906 + t^3. + t^3.312 + t^3.625 + t^3.719 + t^4.031 + 4*t^4.126 + t^4.249 + t^4.344 + t^4.562 + 2*t^4.751 + 2*t^4.969 + 2*t^5.063 + 3*t^5.375 + t^5.593 + 2*t^5.688 + t^5.782 + t^5.811 - t^6. - t^4.344/y - t^4.344*y detail