Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46649 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_3\phi_1q_2\tilde{q}_2$ + $ q_1\tilde{q}_1\tilde{q}_2^2$ + $ M_4\phi_1\tilde{q}_2^2$ 0.6994 0.9174 0.7624 [X:[], M:[0.8373, 0.8254, 0.6746, 0.6746], q:[0.75, 0.4127], qb:[0.4246, 0.4127], phi:[0.5]] [X:[], M:[[-1], [2], [-2], [-2]], q:[[0], [1]], qb:[[-2], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_4$, $ M_2$, $ q_2\tilde{q}_2$, $ M_1$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ \phi_1^2$, $ q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3M_4$, $ M_4^2$, $ \phi_1\tilde{q}_1^2$, $ M_2M_3$, $ M_2M_4$, $ M_3q_2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ M_1M_3$, $ M_1M_4$, $ M_3q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ M_2^2$, $ M_2q_2\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_1M_2$, $ \phi_1q_1q_2$, $ M_2q_2\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_1^2$, $ M_3\phi_1^2$, $ M_4\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_2\phi_1^2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1\phi_1^2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ M_4q_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$ $M_4\phi_1q_2^2$ 0 2*t^2.02 + 2*t^2.48 + 3*t^2.51 + t^3. + t^3.49 + t^3.98 + 2*t^4.01 + 4*t^4.05 + 4*t^4.5 + 6*t^4.54 + 3*t^4.95 + 6*t^4.99 + 8*t^5.02 + 2*t^5.48 + 5*t^5.51 + 2*t^6.04 + 6*t^6.07 + 2*t^6.45 + 4*t^6.49 + 12*t^6.52 + 12*t^6.56 + 4*t^6.98 + 10*t^7.01 + 15*t^7.05 + 4*t^7.43 + 6*t^7.46 + 10*t^7.5 + 16*t^7.54 + 3*t^7.95 + 4*t^7.99 + 5*t^8.02 + 4*t^8.06 + 9*t^8.1 - t^8.44 - 6*t^8.48 - 5*t^8.51 + 14*t^8.55 + 18*t^8.58 + 3*t^8.93 + 4*t^8.96 - t^4.5/y - (2*t^6.52)/y - t^6.98/y - t^7.01/y + t^7.05/y + (4*t^7.5)/y + (6*t^7.54)/y + t^7.95/y + (7*t^7.99)/y + (6*t^8.02)/y + (4*t^8.48)/y + (5*t^8.51)/y - (3*t^8.55)/y + (2*t^8.96)/y - t^4.5*y - 2*t^6.52*y - t^6.98*y - t^7.01*y + t^7.05*y + 4*t^7.5*y + 6*t^7.54*y + t^7.95*y + 7*t^7.99*y + 6*t^8.02*y + 4*t^8.48*y + 5*t^8.51*y - 3*t^8.55*y + 2*t^8.96*y (2*t^2.02)/g1^2 + 2*g1^2*t^2.48 + (3*t^2.51)/g1 + t^3. + g1*t^3.49 + g1^2*t^3.98 + (2*t^4.01)/g1 + (4*t^4.05)/g1^4 + 4*t^4.5 + (6*t^4.54)/g1^3 + 3*g1^4*t^4.95 + 6*g1*t^4.99 + (8*t^5.02)/g1^2 + 2*g1^2*t^5.48 + (5*t^5.51)/g1 + (2*t^6.04)/g1^3 + (6*t^6.07)/g1^6 + 2*g1^4*t^6.45 + 4*g1*t^6.49 + (12*t^6.52)/g1^2 + (12*t^6.56)/g1^5 + 4*g1^2*t^6.98 + (10*t^7.01)/g1 + (15*t^7.05)/g1^4 + 4*g1^6*t^7.43 + 6*g1^3*t^7.46 + 10*t^7.5 + (16*t^7.54)/g1^3 + 3*g1^4*t^7.95 + 4*g1*t^7.99 + (5*t^8.02)/g1^2 + (4*t^8.06)/g1^5 + (9*t^8.1)/g1^8 - g1^5*t^8.44 - 6*g1^2*t^8.48 - (5*t^8.51)/g1 + (14*t^8.55)/g1^4 + (18*t^8.58)/g1^7 + 3*g1^6*t^8.93 + 4*g1^3*t^8.96 - t^4.5/y - (2*t^6.52)/(g1^2*y) - (g1^2*t^6.98)/y - t^7.01/(g1*y) + t^7.05/(g1^4*y) + (4*t^7.5)/y + (6*t^7.54)/(g1^3*y) + (g1^4*t^7.95)/y + (7*g1*t^7.99)/y + (6*t^8.02)/(g1^2*y) + (4*g1^2*t^8.48)/y + (5*t^8.51)/(g1*y) - (3*t^8.55)/(g1^4*y) + (2*g1^3*t^8.96)/y - t^4.5*y - (2*t^6.52*y)/g1^2 - g1^2*t^6.98*y - (t^7.01*y)/g1 + (t^7.05*y)/g1^4 + 4*t^7.5*y + (6*t^7.54*y)/g1^3 + g1^4*t^7.95*y + 7*g1*t^7.99*y + (6*t^8.02*y)/g1^2 + 4*g1^2*t^8.48*y + (5*t^8.51*y)/g1 - (3*t^8.55*y)/g1^4 + 2*g1^3*t^8.96*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47159 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_3\phi_1q_2\tilde{q}_2$ + $ q_1\tilde{q}_1\tilde{q}_2^2$ + $ M_4\phi_1\tilde{q}_2^2$ + $ M_5\phi_1q_2^2$ 0.7202 0.9587 0.7512 [X:[], M:[0.8369, 0.8263, 0.6737, 0.6737, 0.6737], q:[0.75, 0.4131], qb:[0.4237, 0.4131], phi:[0.5]] 3*t^2.02 + 2*t^2.48 + 3*t^2.51 + t^3. + t^3.49 + 2*t^4.01 + 7*t^4.04 + 6*t^4.5 + 9*t^4.53 + 3*t^4.96 + 6*t^4.99 + 9*t^5.02 + 2*t^5.48 + 6*t^5.51 - 2*t^6. - t^4.5/y - t^4.5*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46085 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_3\phi_1q_2\tilde{q}_2$ + $ q_1\tilde{q}_1\tilde{q}_2^2$ 0.6785 0.8762 0.7744 [X:[], M:[0.8379, 0.8242, 0.6758], q:[0.75, 0.4121], qb:[0.4258, 0.4121], phi:[0.5]] t^2.03 + 2*t^2.47 + 3*t^2.51 + t^3. + t^3.49 + 2*t^3.97 + 2*t^4.01 + 2*t^4.05 + 2*t^4.5 + 3*t^4.54 + 3*t^4.95 + 6*t^4.99 + 7*t^5.03 + 2*t^5.47 + 4*t^5.51 - t^4.5/y - t^4.5*y detail