Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46564 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ q_1q_2\tilde{q}_1^2$ + $ M_2\phi_1q_2\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4\phi_1q_2\tilde{q}_2$ 0.6481 0.853 0.7598 [X:[], M:[0.9775, 0.7219, 0.8118, 0.7669], q:[0.7444, 0.2781], qb:[0.4888, 0.4438], phi:[0.5112]] [X:[], M:[[4], [5], [-11], [-3]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_2$, $ q_2\tilde{q}_2$, $ M_4$, $ q_2\tilde{q}_1$, $ M_3$, $ \tilde{q}_1\tilde{q}_2$, $ M_1$, $ \phi_1^2$, $ \phi_1q_2^2$, $ q_1\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ M_2^2$, $ M_2q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_2M_4$, $ M_2q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ M_2M_3$, $ M_4^2$, $ \phi_1q_1q_2$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_3q_2\tilde{q}_2$, $ M_3M_4$, $ M_3q_2\tilde{q}_1$, $ M_3^2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_1M_2$, $ \phi_1q_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_1M_4$, $ M_2\phi_1^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1M_3$, $ M_4\phi_1^2$, $ M_2\phi_1q_2^2$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1q_2^3\tilde{q}_2$, $ M_3\phi_1^2$, $ M_4\phi_1q_2^2$, $ \phi_1q_2^3\tilde{q}_1$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3\phi_1q_2^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_2q_1\tilde{q}_1$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$ $M_4q_1\tilde{q}_1$ 0 2*t^2.17 + 2*t^2.3 + t^2.44 + t^2.8 + t^2.93 + t^3.07 + t^3.2 + t^3.7 + t^4.2 + 4*t^4.33 + 5*t^4.47 + 5*t^4.6 + 2*t^4.74 + t^4.87 + 2*t^4.96 + 4*t^5.1 + 5*t^5.23 + 4*t^5.37 + 2*t^5.5 + t^5.6 + t^5.64 + t^5.73 + 2*t^5.87 + t^6.27 + 2*t^6.36 + t^6.4 + 7*t^6.5 + 8*t^6.63 + 9*t^6.77 + 7*t^6.9 + t^6.99 + 4*t^7.04 + 4*t^7.13 + 2*t^7.17 + 8*t^7.26 + t^7.31 + 10*t^7.4 + 9*t^7.53 + 7*t^7.67 + 2*t^7.76 + 5*t^7.8 + 4*t^7.9 + 2*t^7.94 + 3*t^8.03 + t^8.07 - 2*t^8.17 - 3*t^8.3 + 2*t^8.39 - 2*t^8.44 + 5*t^8.53 + 2*t^8.57 + 11*t^8.66 + 2*t^8.71 + 10*t^8.8 + t^8.84 + 8*t^8.93 - t^4.53/y - t^6.7/y - t^6.83/y - t^6.97/y + t^7.33/y + (4*t^7.47)/y + (3*t^7.6)/y + (2*t^7.74)/y + (2*t^7.96)/y + (5*t^8.1)/y + (6*t^8.23)/y + (6*t^8.37)/y + (3*t^8.5)/y + t^8.64/y + t^8.73/y + (2*t^8.87)/y - t^4.53*y - t^6.7*y - t^6.83*y - t^6.97*y + t^7.33*y + 4*t^7.47*y + 3*t^7.6*y + 2*t^7.74*y + 2*t^7.96*y + 5*t^8.1*y + 6*t^8.23*y + 6*t^8.37*y + 3*t^8.5*y + t^8.64*y + t^8.73*y + 2*t^8.87*y 2*g1^5*t^2.17 + (2*t^2.3)/g1^3 + t^2.44/g1^11 + g1^12*t^2.8 + g1^4*t^2.93 + t^3.07/g1^4 + t^3.2/g1^12 + g1^3*t^3.7 + g1^18*t^4.2 + 4*g1^10*t^4.33 + 5*g1^2*t^4.47 + (5*t^4.6)/g1^6 + (2*t^4.74)/g1^14 + t^4.87/g1^22 + 2*g1^17*t^4.96 + 4*g1^9*t^5.1 + 5*g1*t^5.23 + (4*t^5.37)/g1^7 + (2*t^5.5)/g1^15 + g1^24*t^5.6 + t^5.64/g1^23 + g1^16*t^5.73 + 2*g1^8*t^5.87 + t^6.27/g1^16 + 2*g1^23*t^6.36 + t^6.4/g1^24 + 7*g1^15*t^6.5 + 8*g1^7*t^6.63 + (9*t^6.77)/g1 + (7*t^6.9)/g1^9 + g1^30*t^6.99 + (4*t^7.04)/g1^17 + 4*g1^22*t^7.13 + (2*t^7.17)/g1^25 + 8*g1^14*t^7.26 + t^7.31/g1^33 + 10*g1^6*t^7.4 + (9*t^7.53)/g1^2 + (7*t^7.67)/g1^10 + 2*g1^29*t^7.76 + (5*t^7.8)/g1^18 + 4*g1^21*t^7.9 + (2*t^7.94)/g1^26 + 3*g1^13*t^8.03 + t^8.07/g1^34 - 2*g1^5*t^8.17 - (3*t^8.3)/g1^3 + 2*g1^36*t^8.39 - (2*t^8.44)/g1^11 + 5*g1^28*t^8.53 + (2*t^8.57)/g1^19 + 11*g1^20*t^8.66 + (2*t^8.71)/g1^27 + 10*g1^12*t^8.8 + t^8.84/g1^35 + 8*g1^4*t^8.93 - t^4.53/(g1^2*y) - (g1^3*t^6.7)/y - t^6.83/(g1^5*y) - t^6.97/(g1^13*y) + (g1^10*t^7.33)/y + (4*g1^2*t^7.47)/y + (3*t^7.6)/(g1^6*y) + (2*t^7.74)/(g1^14*y) + (2*g1^17*t^7.96)/y + (5*g1^9*t^8.1)/y + (6*g1*t^8.23)/y + (6*t^8.37)/(g1^7*y) + (3*t^8.5)/(g1^15*y) + t^8.64/(g1^23*y) + (g1^16*t^8.73)/y + (2*g1^8*t^8.87)/y - (t^4.53*y)/g1^2 - g1^3*t^6.7*y - (t^6.83*y)/g1^5 - (t^6.97*y)/g1^13 + g1^10*t^7.33*y + 4*g1^2*t^7.47*y + (3*t^7.6*y)/g1^6 + (2*t^7.74*y)/g1^14 + 2*g1^17*t^7.96*y + 5*g1^9*t^8.1*y + 6*g1*t^8.23*y + (6*t^8.37*y)/g1^7 + (3*t^8.5*y)/g1^15 + (t^8.64*y)/g1^23 + g1^16*t^8.73*y + 2*g1^8*t^8.87*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46257 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ q_1q_2\tilde{q}_1^2$ + $ M_2\phi_1q_2\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ 0.6298 0.8204 0.7677 [X:[], M:[0.9757, 0.7196, 0.8168], q:[0.7439, 0.2804], qb:[0.4879, 0.4393], phi:[0.5121]] 2*t^2.16 + t^2.3 + t^2.45 + t^2.78 + t^2.93 + t^3.07 + t^3.22 + 2*t^3.7 + t^4.17 + 4*t^4.32 + 3*t^4.46 + 3*t^4.61 + t^4.76 + t^4.9 + 2*t^4.94 + 3*t^5.09 + 4*t^5.23 + 3*t^5.38 + t^5.52 + t^5.56 + t^5.67 + t^5.71 + 4*t^5.85 - t^4.54/y - t^4.54*y detail