Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4655 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{6}$ + ${ }M_{4}M_{7}$ + ${ }M_{1}M_{8}$ 0.6925 0.8518 0.8129 [M:[1.0141, 0.9953, 0.9859, 1.0236, 0.9764, 1.0047, 0.9764, 0.9859], q:[0.4882, 0.4976], qb:[0.5259, 0.4788], phi:[0.5024]] [M:[[-6], [2], [6], [-10], [10], [-2], [10], [6]], q:[[5], [1]], qb:[[-11], [9]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }M_{5}$, ${ }M_{7}$, ${ }M_{3}$, ${ }M_{8}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{8}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{7}$, ${ }M_{5}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}M_{8}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$ ${}$ -4 t^2.901 + 2*t^2.929 + 2*t^2.958 + 2*t^3.014 + t^4.38 + t^4.408 + 2*t^4.436 + t^4.465 + t^4.493 + t^4.521 + t^4.549 + t^4.578 + t^4.663 + t^5.802 + 2*t^5.83 + 4*t^5.859 + 3*t^5.887 + 4*t^5.915 + 3*t^5.943 + t^5.972 - 4*t^6. + t^6.028 - t^6.057 - t^6.085 - t^6.113 - t^6.141 + t^7.281 + 3*t^7.309 + 5*t^7.337 + 4*t^7.366 + 6*t^7.394 + 3*t^7.422 + 5*t^7.451 + t^7.479 + 2*t^7.592 - 2*t^7.648 + 2*t^7.677 + t^8.703 + 2*t^8.731 + 5*t^8.76 + 6*t^8.788 + 9*t^8.816 + 8*t^8.844 + 8*t^8.873 - 2*t^8.901 - 4*t^8.929 - 4*t^8.958 - 2*t^8.986 - t^4.507/y - t^7.436/y - t^7.465/y + t^7.493/y - t^7.521/y + t^7.549/y + t^7.578/y + (2*t^8.83)/y + (3*t^8.859)/y + (4*t^8.887)/y + (3*t^8.915)/y + (4*t^8.943)/y + (4*t^8.972)/y - t^4.507*y - t^7.436*y - t^7.465*y + t^7.493*y - t^7.521*y + t^7.549*y + t^7.578*y + 2*t^8.83*y + 3*t^8.859*y + 4*t^8.887*y + 3*t^8.915*y + 4*t^8.943*y + 4*t^8.972*y g1^14*t^2.901 + 2*g1^10*t^2.929 + 2*g1^6*t^2.958 + (2*t^3.014)/g1^2 + g1^17*t^4.38 + g1^13*t^4.408 + 2*g1^9*t^4.436 + g1^5*t^4.465 + g1*t^4.493 + t^4.521/g1^3 + t^4.549/g1^7 + t^4.578/g1^11 + t^4.663/g1^23 + g1^28*t^5.802 + 2*g1^24*t^5.83 + 4*g1^20*t^5.859 + 3*g1^16*t^5.887 + 4*g1^12*t^5.915 + 3*g1^8*t^5.943 + g1^4*t^5.972 - 4*t^6. + t^6.028/g1^4 - t^6.057/g1^8 - t^6.085/g1^12 - t^6.113/g1^16 - t^6.141/g1^20 + g1^31*t^7.281 + 3*g1^27*t^7.309 + 5*g1^23*t^7.337 + 4*g1^19*t^7.366 + 6*g1^15*t^7.394 + 3*g1^11*t^7.422 + 5*g1^7*t^7.451 + g1^3*t^7.479 + (2*t^7.592)/g1^13 - (2*t^7.648)/g1^21 + (2*t^7.677)/g1^25 + g1^42*t^8.703 + 2*g1^38*t^8.731 + 5*g1^34*t^8.76 + 6*g1^30*t^8.788 + 9*g1^26*t^8.816 + 8*g1^22*t^8.844 + 8*g1^18*t^8.873 - 2*g1^14*t^8.901 - 4*g1^10*t^8.929 - 4*g1^6*t^8.958 - 2*g1^2*t^8.986 - t^4.507/(g1*y) - (g1^9*t^7.436)/y - (g1^5*t^7.465)/y + (g1*t^7.493)/y - t^7.521/(g1^3*y) + t^7.549/(g1^7*y) + t^7.578/(g1^11*y) + (2*g1^24*t^8.83)/y + (3*g1^20*t^8.859)/y + (4*g1^16*t^8.887)/y + (3*g1^12*t^8.915)/y + (4*g1^8*t^8.943)/y + (4*g1^4*t^8.972)/y - (t^4.507*y)/g1 - g1^9*t^7.436*y - g1^5*t^7.465*y + g1*t^7.493*y - (t^7.521*y)/g1^3 + (t^7.549*y)/g1^7 + (t^7.578*y)/g1^11 + 2*g1^24*t^8.83*y + 3*g1^20*t^8.859*y + 4*g1^16*t^8.887*y + 3*g1^12*t^8.915*y + 4*g1^8*t^8.943*y + 4*g1^4*t^8.972*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2576 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}M_{6}$ + ${ }M_{4}M_{7}$ 0.6916 0.8487 0.8149 [M:[1.0054, 0.9982, 0.9946, 1.0091, 0.9909, 1.0018, 0.9909], q:[0.4955, 0.4991], qb:[0.51, 0.4918], phi:[0.5009]] t^2.962 + 2*t^2.973 + t^2.984 + 2*t^3.005 + t^3.016 + t^4.454 + t^4.465 + 2*t^4.475 + t^4.486 + t^4.497 + t^4.508 + t^4.519 + t^4.53 + t^4.563 + t^5.924 + 2*t^5.935 + 3*t^5.946 + t^5.956 + 2*t^5.967 + 4*t^5.978 + t^5.989 - 3*t^6. - t^4.503/y - t^4.503*y detail