Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46472 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{2}$ 0.6365 0.8356 0.7616 [X:[], M:[0.9626, 0.7033, 0.9626, 0.778], q:[0.7407, 0.2967], qb:[0.4813, 0.4065], phi:[0.5187]] [X:[], M:[[4], [5], [4], [-3]], q:[[1], [-5]], qb:[[2], [10]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{1}\tilde{q}_{2}$ ${}M_{4}q_{1}\tilde{q}_{1}$ -1 2*t^2.11 + 2*t^2.33 + t^2.66 + 2*t^2.89 + t^3.34 + t^3.44 + t^3.67 + t^4. + 4*t^4.22 + 5*t^4.44 + 3*t^4.67 + 2*t^4.77 + 6*t^5. + 4*t^5.22 + t^5.33 + t^5.45 + 4*t^5.55 + t^5.67 + 5*t^5.78 - t^6. + 3*t^6.11 - t^6.22 + 9*t^6.33 + 8*t^6.55 + t^6.66 + t^6.67 + 5*t^6.78 + 6*t^6.88 + 2*t^7. + 12*t^7.11 - t^7.23 + 9*t^7.33 + 3*t^7.44 + 3*t^7.56 + 10*t^7.66 - t^7.78 + 11*t^7.89 + 2*t^7.99 + t^8. + 8*t^8.21 - 8*t^8.33 + 18*t^8.44 - 4*t^8.56 + 14*t^8.66 + 3*t^8.77 + t^8.78 - t^8.89 + 13*t^8.99 - t^4.56/y - t^6.67/y - t^6.89/y + t^7.22/y + (3*t^7.44)/y + (2*t^7.67)/y + (2*t^7.77)/y + (6*t^8.)/y + (5*t^8.22)/y + (3*t^8.45)/y + (4*t^8.55)/y + (2*t^8.67)/y + (4*t^8.78)/y - t^4.56*y - t^6.67*y - t^6.89*y + t^7.22*y + 3*t^7.44*y + 2*t^7.67*y + 2*t^7.77*y + 6*t^8.*y + 5*t^8.22*y + 3*t^8.45*y + 4*t^8.55*y + 2*t^8.67*y + 4*t^8.78*y 2*g1^5*t^2.11 + (2*t^2.33)/g1^3 + g1^12*t^2.66 + 2*g1^4*t^2.89 + t^3.34/g1^12 + g1^11*t^3.44 + g1^3*t^3.67 + g1^18*t^4. + 4*g1^10*t^4.22 + 5*g1^2*t^4.44 + (3*t^4.67)/g1^6 + 2*g1^17*t^4.77 + 6*g1^9*t^5. + 4*g1*t^5.22 + g1^24*t^5.33 + t^5.45/g1^7 + 4*g1^16*t^5.55 + t^5.67/g1^15 + 5*g1^8*t^5.78 - t^6. + 3*g1^23*t^6.11 - t^6.22/g1^8 + 9*g1^15*t^6.33 + 8*g1^7*t^6.55 + g1^30*t^6.66 + t^6.67/g1^24 + (5*t^6.78)/g1 + 6*g1^22*t^6.88 + (2*t^7.)/g1^9 + 12*g1^14*t^7.11 - t^7.23/g1^17 + 9*g1^6*t^7.33 + 3*g1^29*t^7.44 + (3*t^7.56)/g1^2 + 10*g1^21*t^7.66 - t^7.78/g1^10 + 11*g1^13*t^7.89 + 2*g1^36*t^7.99 + t^8./g1^18 + 8*g1^28*t^8.21 - (8*t^8.33)/g1^3 + 18*g1^20*t^8.44 - (4*t^8.56)/g1^11 + 14*g1^12*t^8.66 + 3*g1^35*t^8.77 + t^8.78/g1^19 - g1^4*t^8.89 + 13*g1^27*t^8.99 - t^4.56/(g1^2*y) - (g1^3*t^6.67)/y - t^6.89/(g1^5*y) + (g1^10*t^7.22)/y + (3*g1^2*t^7.44)/y + (2*t^7.67)/(g1^6*y) + (2*g1^17*t^7.77)/y + (6*g1^9*t^8.)/y + (5*g1*t^8.22)/y + (3*t^8.45)/(g1^7*y) + (4*g1^16*t^8.55)/y + (2*t^8.67)/(g1^15*y) + (4*g1^8*t^8.78)/y - (t^4.56*y)/g1^2 - g1^3*t^6.67*y - (t^6.89*y)/g1^5 + g1^10*t^7.22*y + 3*g1^2*t^7.44*y + (2*t^7.67*y)/g1^6 + 2*g1^17*t^7.77*y + 6*g1^9*t^8.*y + 5*g1*t^8.22*y + (3*t^8.45*y)/g1^7 + 4*g1^16*t^8.55*y + (2*t^8.67*y)/g1^15 + 4*g1^8*t^8.78*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46147 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}$ 0.6188 0.8048 0.7688 [X:[], M:[0.9605, 0.7006, 0.9605], q:[0.7401, 0.2994], qb:[0.4802, 0.4012], phi:[0.5198]] 2*t^2.1 + t^2.34 + t^2.64 + 2*t^2.88 + t^3.36 + t^3.42 + 2*t^3.66 + t^3.97 + 4*t^4.2 + 3*t^4.44 + t^4.68 + 2*t^4.75 + 5*t^4.98 + 2*t^5.22 + t^5.29 + t^5.46 + 4*t^5.53 + 6*t^5.76 - t^6. - t^4.56/y - t^4.56*y detail