Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46449 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ q_1\tilde{q}_1\tilde{q}_2^2$ + $ M_4q_1\tilde{q}_2$ | 0.6997 | 0.9172 | 0.7628 | [X:[], M:[0.8268, 0.6926, 0.6732, 0.8268], q:[0.75, 0.4232], qb:[0.4037, 0.4232], phi:[0.5]] | [X:[], M:[[-1], [4], [1], [-1]], q:[[0], [1]], qb:[[-2], [1]], phi:[[0]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_3$, $ M_2$, $ M_1$, $ M_4$, $ q_2\tilde{q}_1$, $ \tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ \phi_1^2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ M_3^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_2M_3$, $ M_2^2$, $ M_1M_3$, $ M_3M_4$, $ M_3q_2\tilde{q}_1$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_1M_2$, $ M_2M_4$, $ M_2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1^2$, $ M_1M_4$, $ M_4^2$, $ \phi_1q_1\tilde{q}_1$, $ M_4q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3\phi_1^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_2\phi_1^2$, $ q_2^2\tilde{q}_2^2$, $ M_1\phi_1^2$, $ M_4\phi_1^2$, $ M_3q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_2q_1\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_4q_1\tilde{q}_1$, $ q_1q_2\tilde{q}_1^2$, $ q_1\tilde{q}_1^2\tilde{q}_2$ | . | -3 | t^2.02 + t^2.08 + 4*t^2.48 + t^2.54 + t^3. + t^3.46 + t^3.98 + 4*t^4.04 + t^4.1 + t^4.16 + 4*t^4.5 + 5*t^4.56 + t^4.62 + 10*t^4.96 + 5*t^5.02 + 2*t^5.08 + 5*t^5.48 + 2*t^5.54 + 2*t^5.94 - 3*t^6. + 3*t^6.06 + 4*t^6.12 + t^6.18 + t^6.23 + 3*t^6.46 + 13*t^6.52 + 8*t^6.58 + 5*t^6.64 + t^6.69 + 7*t^6.98 + 14*t^7.04 + 6*t^7.1 + 2*t^7.16 + 17*t^7.44 + 10*t^7.5 + 6*t^7.56 + 3*t^7.62 + 9*t^7.96 + 2*t^8.02 + 5*t^8.08 + 3*t^8.14 + 4*t^8.19 + t^8.25 + t^8.31 + 2*t^8.42 - 15*t^8.48 + 4*t^8.54 + 15*t^8.6 + 8*t^8.66 + 5*t^8.71 + t^8.77 + 4*t^8.94 - t^4.5/y - t^6.52/y - t^6.58/y - (2*t^6.98)/y + t^7.1/y + (4*t^7.5)/y + (5*t^7.56)/y + t^7.62/y + (6*t^7.96)/y + (7*t^8.02)/y + t^8.08/y + t^8.42/y + (6*t^8.48)/y + t^8.54/y - t^8.6/y - t^8.66/y + (4*t^8.94)/y - t^4.5*y - t^6.52*y - t^6.58*y - 2*t^6.98*y + t^7.1*y + 4*t^7.5*y + 5*t^7.56*y + t^7.62*y + 6*t^7.96*y + 7*t^8.02*y + t^8.08*y + t^8.42*y + 6*t^8.48*y + t^8.54*y - t^8.6*y - t^8.66*y + 4*t^8.94*y | g1*t^2.02 + g1^4*t^2.08 + (4*t^2.48)/g1 + g1^2*t^2.54 + t^3. + t^3.46/g1^2 + t^3.98/g1 + 4*g1^2*t^4.04 + g1^5*t^4.1 + g1^8*t^4.16 + 4*t^4.5 + 5*g1^3*t^4.56 + g1^6*t^4.62 + (10*t^4.96)/g1^2 + 5*g1*t^5.02 + 2*g1^4*t^5.08 + (5*t^5.48)/g1 + 2*g1^2*t^5.54 + (2*t^5.94)/g1^3 - 3*t^6. + 3*g1^3*t^6.06 + 4*g1^6*t^6.12 + g1^9*t^6.18 + g1^12*t^6.23 + (3*t^6.46)/g1^2 + 13*g1*t^6.52 + 8*g1^4*t^6.58 + 5*g1^7*t^6.64 + g1^10*t^6.69 + (7*t^6.98)/g1 + 14*g1^2*t^7.04 + 6*g1^5*t^7.1 + 2*g1^8*t^7.16 + (17*t^7.44)/g1^3 + 10*t^7.5 + 6*g1^3*t^7.56 + 3*g1^6*t^7.62 + (9*t^7.96)/g1^2 + 2*g1*t^8.02 + 5*g1^4*t^8.08 + 3*g1^7*t^8.14 + 4*g1^10*t^8.19 + g1^13*t^8.25 + g1^16*t^8.31 + (2*t^8.42)/g1^4 - (15*t^8.48)/g1 + 4*g1^2*t^8.54 + 15*g1^5*t^8.6 + 8*g1^8*t^8.66 + 5*g1^11*t^8.71 + g1^14*t^8.77 + (4*t^8.94)/g1^3 - t^4.5/y - (g1*t^6.52)/y - (g1^4*t^6.58)/y - (2*t^6.98)/(g1*y) + (g1^5*t^7.1)/y + (4*t^7.5)/y + (5*g1^3*t^7.56)/y + (g1^6*t^7.62)/y + (6*t^7.96)/(g1^2*y) + (7*g1*t^8.02)/y + (g1^4*t^8.08)/y + t^8.42/(g1^4*y) + (6*t^8.48)/(g1*y) + (g1^2*t^8.54)/y - (g1^5*t^8.6)/y - (g1^8*t^8.66)/y + (4*t^8.94)/(g1^3*y) - t^4.5*y - g1*t^6.52*y - g1^4*t^6.58*y - (2*t^6.98*y)/g1 + g1^5*t^7.1*y + 4*t^7.5*y + 5*g1^3*t^7.56*y + g1^6*t^7.62*y + (6*t^7.96*y)/g1^2 + 7*g1*t^8.02*y + g1^4*t^8.08*y + (t^8.42*y)/g1^4 + (6*t^8.48*y)/g1 + g1^2*t^8.54*y - g1^5*t^8.6*y - g1^8*t^8.66*y + (4*t^8.94*y)/g1^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46150 | SU2adj1nf2 | $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ \phi_1^4$ + $ M_2\phi_1\tilde{q}_1^2$ + $ M_3\phi_1\tilde{q}_1\tilde{q}_2$ + $ q_1\tilde{q}_1\tilde{q}_2^2$ | 0.685 | 0.8925 | 0.7675 | [X:[], M:[0.8301, 0.6797, 0.6699], q:[0.75, 0.4199], qb:[0.4101, 0.4199], phi:[0.5]] | t^2.01 + t^2.04 + 3*t^2.49 + t^2.52 + t^3. + t^3.48 + t^3.51 + t^3.99 + 4*t^4.02 + t^4.05 + t^4.08 + 3*t^4.5 + 4*t^4.53 + t^4.56 + 6*t^4.98 + 4*t^5.01 + 2*t^5.04 + 4*t^5.49 + 3*t^5.52 + t^5.55 + t^5.97 - t^4.5/y - t^4.5*y | detail |