Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46368 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ | 0.6584 | 0.8708 | 0.7561 | [X:[], M:[0.9566, 0.8334, 0.8184, 0.8699, 0.7317], q:[0.7392, 0.3042], qb:[0.4274, 0.4424], phi:[0.5217]] | [X:[], M:[[4, 4], [-13, -1], [-1, -13], [12, 12], [7, -5]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_5$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_3$, $ M_2$, $ M_4$, $ \tilde{q}_1\tilde{q}_2$, $ M_1$, $ \phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ M_5^2$, $ M_5q_2\tilde{q}_1$, $ q_2^2\tilde{q}_1^2$, $ M_5q_2\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_2^2$, $ M_3M_5$, $ M_3q_2\tilde{q}_1$, $ M_2M_5$, $ \phi_1q_1q_2$, $ M_2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_4M_5$, $ M_4q_2\tilde{q}_1$, $ M_5\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_4q_2\tilde{q}_2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ M_3^2$, $ M_2M_3$, $ M_2^2$, $ M_3M_4$, $ M_1M_5$, $ \phi_1q_1\tilde{q}_1$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_2M_4$, $ \phi_1q_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_4^2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_1M_3$, $ M_5\phi_1^2$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1M_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_1M_4$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_1^2$, $ M_4\phi_1^2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_5\phi_1q_2\tilde{q}_1$, $ \phi_1q_2^2\tilde{q}_1^2$ | . | -2 | 2*t^2.19 + t^2.24 + t^2.46 + t^2.5 + 2*t^2.61 + t^2.87 + t^3.13 + t^3.76 + t^4.13 + t^4.17 + t^4.22 + 3*t^4.39 + 2*t^4.43 + t^4.48 + 2*t^4.65 + 3*t^4.7 + t^4.74 + 4*t^4.8 + 2*t^4.85 + t^4.91 + t^4.96 + t^5. + 4*t^5.06 + 3*t^5.11 + 3*t^5.22 + 3*t^5.33 + 2*t^5.37 + 2*t^5.48 + 2*t^5.74 + t^5.96 - 2*t^6. - t^6.04 + t^6.22 + 2*t^6.32 + 3*t^6.37 + t^6.41 + t^6.46 + 5*t^6.58 + 4*t^6.63 + 2*t^6.67 + 2*t^6.72 + 2*t^6.74 + 2*t^6.78 + 2*t^6.83 + 3*t^6.85 + 4*t^6.89 + t^6.94 + t^6.98 + 6*t^7. + 4*t^7.04 + 2*t^7.09 + 2*t^7.11 + 2*t^7.15 + 2*t^7.2 + t^7.24 + 7*t^7.26 + 6*t^7.3 + 3*t^7.35 + t^7.37 + 7*t^7.41 + 4*t^7.46 + t^7.5 + 6*t^7.52 + 3*t^7.57 + 2*t^7.61 + 6*t^7.67 + 4*t^7.72 + t^7.78 + 5*t^7.83 + t^7.87 + t^7.89 + 4*t^7.93 + 2*t^7.98 + 2*t^8.09 + t^8.15 - 5*t^8.19 - 4*t^8.24 + t^8.26 - t^8.28 + t^8.3 + 4*t^8.35 + t^8.39 + t^8.41 + t^8.44 - 4*t^8.46 - 5*t^8.5 + 3*t^8.52 - t^8.55 + 3*t^8.56 - 4*t^8.61 - t^8.65 + t^8.67 + t^8.7 - t^8.72 - t^8.76 + 7*t^8.78 + 6*t^8.82 - 3*t^8.87 + t^8.91 + 4*t^8.93 + 2*t^8.96 + 5*t^8.98 - t^4.57/y - t^6.76/y - t^7.02/y - t^7.07/y - t^7.17/y + t^7.39/y + (2*t^7.43)/y + (2*t^7.65)/y + (3*t^7.7)/y + t^7.74/y + (4*t^7.8)/y + (2*t^7.85)/y + (2*t^7.96)/y + (5*t^8.06)/y + (4*t^8.11)/y + t^8.22/y + (3*t^8.33)/y + (3*t^8.37)/y + (2*t^8.48)/y + t^8.59/y + t^8.63/y + (2*t^8.74)/y + t^8.96/y - t^4.57*y - t^6.76*y - t^7.02*y - t^7.07*y - t^7.17*y + t^7.39*y + 2*t^7.43*y + 2*t^7.65*y + 3*t^7.7*y + t^7.74*y + 4*t^7.8*y + 2*t^7.85*y + 2*t^7.96*y + 5*t^8.06*y + 4*t^8.11*y + t^8.22*y + 3*t^8.33*y + 3*t^8.37*y + 2*t^8.48*y + t^8.59*y + t^8.63*y + 2*t^8.74*y + t^8.96*y | (2*g1^7*t^2.19)/g2^5 + (g2^7*t^2.24)/g1^5 + t^2.46/(g1*g2^13) + t^2.5/(g1^13*g2) + 2*g1^12*g2^12*t^2.61 + g1^4*g2^4*t^2.87 + t^3.13/(g1^4*g2^4) + (g1^5*t^3.76)/g2^7 + (g1^22*t^4.13)/g2^2 + g1^10*g2^10*t^4.17 + (g2^22*t^4.22)/g1^2 + (3*g1^14*t^4.39)/g2^10 + 2*g1^2*g2^2*t^4.43 + (g2^14*t^4.48)/g1^10 + (2*g1^6*t^4.65)/g2^18 + (3*t^4.7)/(g1^6*g2^6) + (g2^6*t^4.74)/g1^18 + 4*g1^19*g2^7*t^4.8 + 2*g1^7*g2^19*t^4.85 + t^4.91/(g1^2*g2^26) + t^4.96/(g1^14*g2^14) + t^5./(g1^26*g2^2) + (4*g1^11*t^5.06)/g2 + (3*g2^11*t^5.11)/g1 + 3*g1^24*g2^24*t^5.22 + (3*g1^3*t^5.33)/g2^9 + (2*g2^3*t^5.37)/g1^9 + 2*g1^16*g2^16*t^5.48 + 2*g1^8*g2^8*t^5.74 + (g1^12*t^5.96)/g2^12 - 2*t^6. - (g2^12*t^6.04)/g1^12 + (g1^4*t^6.22)/g2^20 + (2*g1^29*t^6.32)/g2^7 + 3*g1^17*g2^5*t^6.37 + g1^5*g2^17*t^6.41 + (g2^29*t^6.46)/g1^7 + (5*g1^21*t^6.58)/g2^15 + (4*g1^9*t^6.63)/g2^3 + (2*g2^9*t^6.67)/g1^3 + (2*g2^21*t^6.72)/g1^15 + 2*g1^34*g2^10*t^6.74 + 2*g1^22*g2^22*t^6.78 + 2*g1^10*g2^34*t^6.83 + (3*g1^13*t^6.85)/g2^23 + (4*g1*t^6.89)/g2^11 + (g2*t^6.94)/g1^11 + (g2^13*t^6.98)/g1^23 + 6*g1^26*g2^2*t^7. + 4*g1^14*g2^14*t^7.04 + 2*g1^2*g2^26*t^7.09 + (2*g1^5*t^7.11)/g2^31 + (2*t^7.15)/(g1^7*g2^19) + (2*t^7.2)/(g1^19*g2^7) + (g2^5*t^7.24)/g1^31 + (7*g1^18*t^7.26)/g2^6 + 6*g1^6*g2^6*t^7.3 + (3*g2^18*t^7.35)/g1^6 + t^7.37/(g1^3*g2^39) + t^7.41/(g1^15*g2^27) + 6*g1^31*g2^19*t^7.41 + t^7.46/(g1^27*g2^15) + 3*g1^19*g2^31*t^7.46 + t^7.5/(g1^39*g2^3) + (6*g1^10*t^7.52)/g2^14 + (3*t^7.57)/(g1^2*g2^2) + (2*g2^10*t^7.61)/g1^14 + 6*g1^23*g2^11*t^7.67 + 4*g1^11*g2^23*t^7.72 + (g1^2*t^7.78)/g2^22 + t^7.83/(g1^10*g2^10) + 4*g1^36*g2^36*t^7.83 + (g2^2*t^7.87)/g1^22 + (g1^27*t^7.89)/g2^9 + 4*g1^15*g2^3*t^7.93 + 2*g1^3*g2^15*t^7.98 - t^8.09/(g1^18*g2^18) + 3*g1^28*g2^28*t^8.09 + (g1^19*t^8.15)/g2^17 - (5*g1^7*t^8.19)/g2^5 - (4*g2^7*t^8.24)/g1^5 + (g1^44*t^8.26)/g2^4 - (g2^19*t^8.28)/g1^17 + g1^32*g2^8*t^8.3 + 4*g1^20*g2^20*t^8.35 + g1^8*g2^32*t^8.39 + (g1^11*t^8.41)/g2^25 + (g2^44*t^8.44)/g1^4 - (4*t^8.46)/(g1*g2^13) - (5*t^8.5)/(g1^13*g2) + (3*g1^36*t^8.52)/g2^12 - (g2^11*t^8.55)/g1^25 + 3*g1^24*t^8.56 - 4*g1^12*g2^12*t^8.61 - g2^24*t^8.65 + (g1^3*t^8.67)/g2^33 + (g2^36*t^8.7)/g1^12 - t^8.72/(g1^9*g2^21) - t^8.76/(g1^21*g2^9) + (7*g1^28*t^8.78)/g2^20 + (6*g1^16*t^8.82)/g2^8 - 3*g1^4*g2^4*t^8.87 + (g2^16*t^8.91)/g1^8 + 4*g1^41*g2^5*t^8.93 + (2*g2^28*t^8.96)/g1^20 + 5*g1^29*g2^17*t^8.98 - t^4.57/(g1^2*g2^2*y) - (g1^5*t^6.76)/(g2^7*y) - t^7.02/(g1^3*g2^15*y) - t^7.07/(g1^15*g2^3*y) - (g1^10*g2^10*t^7.17)/y + (g1^14*t^7.39)/(g2^10*y) + (2*g1^2*g2^2*t^7.43)/y + (2*g1^6*t^7.65)/(g2^18*y) + (3*t^7.7)/(g1^6*g2^6*y) + (g2^6*t^7.74)/(g1^18*y) + (4*g1^19*g2^7*t^7.8)/y + (2*g1^7*g2^19*t^7.85)/y + (2*t^7.96)/(g1^14*g2^14*y) + (5*g1^11*t^8.06)/(g2*y) + (4*g2^11*t^8.11)/(g1*y) + (g1^24*g2^24*t^8.22)/y + (3*g1^3*t^8.33)/(g2^9*y) + (3*g2^3*t^8.37)/(g1^9*y) + (2*g1^16*g2^16*t^8.48)/y + t^8.59/(g1^5*g2^17*y) + t^8.63/(g1^17*g2^5*y) + (2*g1^8*g2^8*t^8.74)/y + (g1^12*t^8.96)/(g2^12*y) - (t^4.57*y)/(g1^2*g2^2) - (g1^5*t^6.76*y)/g2^7 - (t^7.02*y)/(g1^3*g2^15) - (t^7.07*y)/(g1^15*g2^3) - g1^10*g2^10*t^7.17*y + (g1^14*t^7.39*y)/g2^10 + 2*g1^2*g2^2*t^7.43*y + (2*g1^6*t^7.65*y)/g2^18 + (3*t^7.7*y)/(g1^6*g2^6) + (g2^6*t^7.74*y)/g1^18 + 4*g1^19*g2^7*t^7.8*y + 2*g1^7*g2^19*t^7.85*y + (2*t^7.96*y)/(g1^14*g2^14) + (5*g1^11*t^8.06*y)/g2 + (4*g2^11*t^8.11*y)/g1 + g1^24*g2^24*t^8.22*y + (3*g1^3*t^8.33*y)/g2^9 + (3*g2^3*t^8.37*y)/g1^9 + 2*g1^16*g2^16*t^8.48*y + (t^8.59*y)/(g1^5*g2^17) + (t^8.63*y)/(g1^17*g2^5) + 2*g1^8*g2^8*t^8.74*y + (g1^12*t^8.96*y)/g2^12 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
47257 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_5\phi_1q_2\tilde{q}_1$ | 0.6583 | 0.8702 | 0.7564 | [X:[], M:[0.9566, 0.826, 0.826, 0.8697, 0.7391], q:[0.7391, 0.3043], qb:[0.4348, 0.4348], phi:[0.5217]] | 3*t^2.22 + 2*t^2.48 + 2*t^2.61 + t^2.87 + t^3.13 + t^3.78 + 3*t^4.17 + 6*t^4.43 + 6*t^4.7 + 6*t^4.83 + 3*t^4.96 + 7*t^5.09 + 3*t^5.22 + 5*t^5.35 + 2*t^5.48 + 2*t^5.74 - 2*t^6. - t^4.57/y - t^4.57*y | detail | |
47074 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1q_2\tilde{q}_1$ | 0.6778 | 0.9061 | 0.748 | [X:[], M:[0.956, 0.827, 0.827, 0.8681, 0.739, 0.739], q:[0.739, 0.305], qb:[0.434, 0.434], phi:[0.522]] | 4*t^2.22 + 2*t^2.48 + 2*t^2.6 + t^2.87 + t^3.13 + 3*t^4.17 + 10*t^4.43 + 8*t^4.7 + 8*t^4.82 + 3*t^4.96 + 8*t^5.09 + 3*t^5.21 + 6*t^5.35 + 2*t^5.47 + 2*t^5.74 - 5*t^6. - t^4.57/y - t^4.57*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46303 | SU2adj1nf2 | $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_3q_1\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_4\phi_1q_2^2$ | 0.6388 | 0.8344 | 0.7656 | [X:[], M:[0.9571, 0.8251, 0.8251, 0.8713], q:[0.7393, 0.3036], qb:[0.4357, 0.4357], phi:[0.5214]] | 2*t^2.22 + 2*t^2.48 + 2*t^2.61 + t^2.87 + t^3.13 + 2*t^3.78 + 3*t^4.18 + 3*t^4.44 + 4*t^4.69 + 4*t^4.83 + 3*t^4.95 + 6*t^5.09 + 3*t^5.23 + 4*t^5.35 + 2*t^5.49 + 2*t^5.74 - t^6. - t^4.56/y - t^4.56*y | detail |