Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46366 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ 0.5861 0.7654 0.7658 [X:[], M:[1.0, 0.7055, 0.8528, 0.7055], q:[0.7868, 0.2132], qb:[0.5077, 0.7868], phi:[0.4264]] [X:[], M:[[0], [-8], [-4], [-8]], q:[[1], [-1]], qb:[[7], [1]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{4}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}q_{2}^{2}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{4}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$ ${}\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ -1 2*t^2.12 + t^2.16 + 3*t^2.56 + 2*t^3. + 3*t^4.23 + 2*t^4.28 + 2*t^4.33 + 6*t^4.67 + 4*t^4.72 + 9*t^5.12 + 2*t^5.16 + 4*t^5.56 - t^6. + 4*t^6.35 + 2*t^6.4 + 2*t^6.49 + 9*t^6.79 + 6*t^6.84 + 3*t^6.88 + 16*t^7.23 + 9*t^7.28 + 2*t^7.33 + 15*t^7.67 + 2*t^7.72 - t^7.77 + 2*t^8.12 - 4*t^8.16 + 5*t^8.47 + 2*t^8.51 - 7*t^8.56 - 2*t^8.6 + 3*t^8.65 + 12*t^8.91 + 6*t^8.95 - t^4.28/y - (2*t^6.4)/y - (2*t^6.84)/y + t^7.23/y + (2*t^7.28)/y + (6*t^7.67)/y + (5*t^7.72)/y + (7*t^8.12)/y + (4*t^8.16)/y - (3*t^8.51)/y + (6*t^8.56)/y - (4*t^8.95)/y - t^4.28*y - 2*t^6.4*y - 2*t^6.84*y + t^7.23*y + 2*t^7.28*y + 6*t^7.67*y + 5*t^7.72*y + 7*t^8.12*y + 4*t^8.16*y - 3*t^8.51*y + 6*t^8.56*y - 4*t^8.95*y (2*t^2.12)/g1^8 + g1^6*t^2.16 + (3*t^2.56)/g1^4 + 2*t^3. + (3*t^4.23)/g1^16 + (2*t^4.28)/g1^2 + 2*g1^12*t^4.33 + (6*t^4.67)/g1^12 + 4*g1^2*t^4.72 + (9*t^5.12)/g1^8 + 2*g1^6*t^5.16 + (4*t^5.56)/g1^4 - t^6. + (4*t^6.35)/g1^24 + (2*t^6.4)/g1^10 + 2*g1^18*t^6.49 + (9*t^6.79)/g1^20 + (6*t^6.84)/g1^6 + 3*g1^8*t^6.88 + (16*t^7.23)/g1^16 + (9*t^7.28)/g1^2 + 2*g1^12*t^7.33 + (15*t^7.67)/g1^12 + 2*g1^2*t^7.72 - g1^16*t^7.77 + (2*t^8.12)/g1^8 - 4*g1^6*t^8.16 + (5*t^8.47)/g1^32 + (2*t^8.51)/g1^18 - (7*t^8.56)/g1^4 - 2*g1^10*t^8.6 + 3*g1^24*t^8.65 + (12*t^8.91)/g1^28 + (6*t^8.95)/g1^14 - t^4.28/(g1^2*y) - (2*t^6.4)/(g1^10*y) - (2*t^6.84)/(g1^6*y) + t^7.23/(g1^16*y) + (2*t^7.28)/(g1^2*y) + (6*t^7.67)/(g1^12*y) + (5*g1^2*t^7.72)/y + (7*t^8.12)/(g1^8*y) + (4*g1^6*t^8.16)/y - (3*t^8.51)/(g1^18*y) + (6*t^8.56)/(g1^4*y) - (4*t^8.95)/(g1^14*y) - (t^4.28*y)/g1^2 - (2*t^6.4*y)/g1^10 - (2*t^6.84*y)/g1^6 + (t^7.23*y)/g1^16 + (2*t^7.28*y)/g1^2 + (6*t^7.67*y)/g1^12 + 5*g1^2*t^7.72*y + (7*t^8.12*y)/g1^8 + 4*g1^6*t^8.16*y - (3*t^8.51*y)/g1^18 + (6*t^8.56*y)/g1^4 - (4*t^8.95*y)/g1^14


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46184 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ 0.5658 0.7265 0.7788 [X:[], M:[1.0, 0.7154, 0.8577], q:[0.7856, 0.2144], qb:[0.499, 0.7856], phi:[0.4289]] t^2.14 + t^2.15 + 3*t^2.57 + 2*t^3. + t^3.85 + 2*t^4.28 + 2*t^4.29 + 4*t^4.71 + 3*t^4.72 + 2*t^5.14 + 7*t^5.15 + 4*t^5.57 + t^5.99 - t^4.29/y - t^4.29*y detail