Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46353 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{2}M_{4}$ 0.6015 0.7847 0.7666 [M:[0.9305, 0.7914, 0.8129, 1.2086], q:[0.7326, 0.3369], qb:[0.3369, 0.4545], phi:[0.5348]] [M:[[4], [12], [-18], [-12]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{4}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}$ ${}M_{4}q_{2}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{3}\tilde{q}_{2}$ 3 t^2.021 + 2*t^2.374 + t^2.439 + t^2.791 + 2*t^3.209 + 3*t^3.626 + 2*t^3.979 + t^4.043 + t^4.331 + 2*t^4.396 + t^4.46 + 3*t^4.749 + 3*t^4.813 + t^4.877 + 2*t^5.166 + 3*t^5.23 + 4*t^5.583 + 3*t^5.647 + 3*t^6. + 4*t^6.064 + 2*t^6.353 + 5*t^6.417 + t^6.481 + 2*t^6.706 + 3*t^6.77 + 6*t^6.834 + t^6.899 + 4*t^7.123 + 3*t^7.187 + 8*t^7.251 + t^7.316 + 3*t^7.54 + 4*t^7.604 + 4*t^7.669 + 6*t^7.957 + 3*t^8.021 + 4*t^8.086 + 2*t^8.31 + t^8.374 + 4*t^8.439 + 4*t^8.503 + t^8.663 + 2*t^8.727 + t^8.791 + 6*t^8.856 + t^8.92 - t^4.604/y - t^7.043/y + (2*t^7.396)/y + t^7.46/y + t^7.749/y + (3*t^7.813)/y + (3*t^8.166)/y + (3*t^8.23)/y + (4*t^8.583)/y + (5*t^8.647)/y - t^4.604*y - t^7.043*y + 2*t^7.396*y + t^7.46*y + t^7.749*y + 3*t^7.813*y + 3*t^8.166*y + 3*t^8.23*y + 4*t^8.583*y + 5*t^8.647*y t^2.021/g1^10 + 2*g1^12*t^2.374 + t^2.439/g1^18 + g1^4*t^2.791 + (2*t^3.209)/g1^4 + (3*t^3.626)/g1^12 + 2*g1^10*t^3.979 + t^4.043/g1^20 + g1^32*t^4.331 + 2*g1^2*t^4.396 + t^4.46/g1^28 + 3*g1^24*t^4.749 + (3*t^4.813)/g1^6 + t^4.877/g1^36 + 2*g1^16*t^5.166 + (3*t^5.23)/g1^14 + 4*g1^8*t^5.583 + (3*t^5.647)/g1^22 + 3*t^6. + (4*t^6.064)/g1^30 + 2*g1^22*t^6.353 + (5*t^6.417)/g1^8 + t^6.481/g1^38 + 2*g1^44*t^6.706 + 3*g1^14*t^6.77 + (6*t^6.834)/g1^16 + t^6.899/g1^46 + 4*g1^36*t^7.123 + 3*g1^6*t^7.187 + (8*t^7.251)/g1^24 + t^7.316/g1^54 + 3*g1^28*t^7.54 + (4*t^7.604)/g1^2 + (4*t^7.669)/g1^32 + 6*g1^20*t^7.957 + (3*t^8.021)/g1^10 + (4*t^8.086)/g1^40 + 2*g1^42*t^8.31 + g1^12*t^8.374 + (4*t^8.439)/g1^18 + (4*t^8.503)/g1^48 + g1^64*t^8.663 + 2*g1^34*t^8.727 + g1^4*t^8.791 + (6*t^8.856)/g1^26 + t^8.92/g1^56 - t^4.604/(g1^2*y) - t^7.043/(g1^20*y) + (2*g1^2*t^7.396)/y + t^7.46/(g1^28*y) + (g1^24*t^7.749)/y + (3*t^7.813)/(g1^6*y) + (3*g1^16*t^8.166)/y + (3*t^8.23)/(g1^14*y) + (4*g1^8*t^8.583)/y + (5*t^8.647)/(g1^22*y) - (t^4.604*y)/g1^2 - (t^7.043*y)/g1^20 + 2*g1^2*t^7.396*y + (t^7.46*y)/g1^28 + g1^24*t^7.749*y + (3*t^7.813*y)/g1^6 + 3*g1^16*t^8.166*y + (3*t^8.23*y)/g1^14 + 4*g1^8*t^8.583*y + (5*t^8.647*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46231 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 0.6188 0.8154 0.7589 [M:[0.9271, 0.7813, 0.828], q:[0.7318, 0.3411], qb:[0.3411, 0.4402], phi:[0.5364]] t^2.047 + 3*t^2.344 + t^2.484 + t^2.781 + 2*t^3.219 + 2*t^3.656 + 2*t^3.953 + t^4.093 + t^4.251 + 3*t^4.391 + t^4.531 + 6*t^4.688 + 4*t^4.828 + t^4.968 + 3*t^5.125 + 3*t^5.265 + 6*t^5.563 + 2*t^5.703 + 3*t^6. - t^4.609/y - t^4.609*y detail