Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46329 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{4}$ 0.6327 0.8272 0.7649 [M:[0.963, 0.7407, 0.7407, 1.037], q:[0.7407, 0.2963], qb:[0.4444, 0.4444], phi:[0.5185]] [M:[[4, 4], [-5, 7], [7, -5], [-4, -4]], q:[[1, 1], [-5, -5]], qb:[[12, 0], [0, 12]], phi:[[-2, -2]]] 2 {a: 205/324, c: 67/81, M1: 26/27, M2: 20/27, M3: 20/27, M4: 28/27, q1: 20/27, q2: 8/27, qb1: 4/9, qb2: 4/9, phi1: 14/27}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{4}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{4}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{3}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}$ -5 4*t^2.222 + t^2.667 + 2*t^3.111 + t^3.333 + 2*t^3.556 + 3*t^4.222 + 10*t^4.444 + 4*t^4.889 + 9*t^5.333 + 2*t^5.556 + 9*t^5.778 - 5*t^6. + 3*t^6.222 + 10*t^6.444 + 21*t^6.667 + t^6.889 + 8*t^7.111 + t^7.333 + 19*t^7.556 + 6*t^7.778 + 19*t^8. - 22*t^8.222 + 18*t^8.444 + 13*t^8.667 + 39*t^8.889 - t^4.556/y - (2*t^6.778)/y + (7*t^7.444)/y - t^7.667/y + (4*t^7.889)/y + (10*t^8.333)/y + (4*t^8.556)/y + (10*t^8.778)/y - t^4.556*y - 2*t^6.778*y + 7*t^7.444*y - t^7.667*y + 4*t^7.889*y + 10*t^8.333*y + 4*t^8.556*y + 10*t^8.778*y (2*g1^7*t^2.222)/g2^5 + (2*g2^7*t^2.222)/g1^5 + g1^12*g2^12*t^2.667 + (2*t^3.111)/(g1^4*g2^4) + t^3.333/(g1^12*g2^12) + g1^13*g2*t^3.556 + g1*g2^13*t^3.556 + (g1^22*t^4.222)/g2^2 + g1^10*g2^10*t^4.222 + (g2^22*t^4.222)/g1^2 + (3*g1^14*t^4.444)/g2^10 + 4*g1^2*g2^2*t^4.444 + (3*g2^14*t^4.444)/g1^10 + 2*g1^19*g2^7*t^4.889 + 2*g1^7*g2^19*t^4.889 + (4*g1^3*t^5.333)/g2^9 + (4*g2^3*t^5.333)/g1^9 + g1^24*g2^24*t^5.333 + t^5.556/(g1^5*g2^17) + t^5.556/(g1^17*g2^5) + (2*g1^20*t^5.778)/g2^4 + 5*g1^8*g2^8*t^5.778 + (2*g2^20*t^5.778)/g1^4 - 3*t^6. - (g1^12*t^6.)/g2^12 - (g2^12*t^6.)/g1^12 + t^6.222/(g1^8*g2^8) + g1^25*g2^13*t^6.222 + g1^13*g2^25*t^6.222 + (2*t^6.444)/(g1^16*g2^16) + (2*g1^29*t^6.444)/g2^7 + 2*g1^17*g2^5*t^6.444 + 2*g1^5*g2^17*t^6.444 + (2*g2^29*t^6.444)/g1^7 + t^6.667/(g1^24*g2^24) + (4*g1^21*t^6.667)/g2^15 + (6*g1^9*t^6.667)/g2^3 + (6*g2^9*t^6.667)/g1^3 + (4*g2^21*t^6.667)/g1^15 - (g1*t^6.889)/g2^11 - (g2*t^6.889)/g1^11 + g1^34*g2^10*t^6.889 + g1^22*g2^22*t^6.889 + g1^10*g2^34*t^6.889 - t^7.111/(g1^7*g2^19) - t^7.111/(g1^19*g2^7) + 3*g1^26*g2^2*t^7.111 + 4*g1^14*g2^14*t^7.111 + 3*g1^2*g2^26*t^7.111 + (g1^18*t^7.333)/g2^6 - g1^6*g2^6*t^7.333 + (g2^18*t^7.333)/g1^6 + (5*g1^10*t^7.556)/g2^14 + (5*t^7.556)/(g1^2*g2^2) + (5*g2^10*t^7.556)/g1^14 + 2*g1^31*g2^19*t^7.556 + 2*g1^19*g2^31*t^7.556 + (g1^2*t^7.778)/g2^22 + (g1^35*t^7.778)/g2 + (g2^2*t^7.778)/g1^22 + g1^23*g2^11*t^7.778 + g1^11*g2^23*t^7.778 + (g2^35*t^7.778)/g1 + (3*g1^27*t^8.)/g2^9 + 6*g1^15*g2^3*t^8. + 6*g1^3*g2^15*t^8. + (3*g2^27*t^8.)/g1^9 + g1^36*g2^36*t^8. - (2*g1^19*t^8.222)/g2^17 - (9*g1^7*t^8.222)/g2^5 - (9*g2^7*t^8.222)/g1^5 - (2*g2^19*t^8.222)/g1^17 + (2*t^8.444)/(g1*g2^13) + (g1^44*t^8.444)/g2^4 + (2*t^8.444)/(g1^13*g2) + 3*g1^32*g2^8*t^8.444 + 6*g1^20*g2^20*t^8.444 + 3*g1^8*g2^32*t^8.444 + (g2^44*t^8.444)/g1^4 + 2*g1^24*t^8.667 + (2*t^8.667)/(g1^9*g2^21) + (3*g1^36*t^8.667)/g2^12 + (2*t^8.667)/(g1^21*g2^9) - g1^12*g2^12*t^8.667 + 2*g2^24*t^8.667 + (3*g2^36*t^8.667)/g1^12 + t^8.889/(g1^17*g2^29) + (5*g1^28*t^8.889)/g2^20 + t^8.889/(g1^29*g2^17) + (8*g1^16*t^8.889)/g2^8 + 9*g1^4*g2^4*t^8.889 + (8*g2^16*t^8.889)/g1^8 + g1^37*g2^25*t^8.889 + (5*g2^28*t^8.889)/g1^20 + g1^25*g2^37*t^8.889 - t^4.556/(g1^2*g2^2*y) - (g1^5*t^6.778)/(g2^7*y) - (g2^5*t^6.778)/(g1^7*y) + (g1^14*t^7.444)/(g2^10*y) + (5*g1^2*g2^2*t^7.444)/y + (g2^14*t^7.444)/(g1^10*y) - t^7.667/(g1^6*g2^6*y) + (2*g1^19*g2^7*t^7.889)/y + (2*g1^7*g2^19*t^7.889)/y + (5*g1^3*t^8.333)/(g2^9*y) + (5*g2^3*t^8.333)/(g1^9*y) + (2*t^8.556)/(g1^5*g2^17*y) + (2*t^8.556)/(g1^17*g2^5*y) + (2*g1^20*t^8.778)/(g2^4*y) + (6*g1^8*g2^8*t^8.778)/y + (2*g2^20*t^8.778)/(g1^4*y) - (t^4.556*y)/(g1^2*g2^2) - (g1^5*t^6.778*y)/g2^7 - (g2^5*t^6.778*y)/g1^7 + (g1^14*t^7.444*y)/g2^10 + 5*g1^2*g2^2*t^7.444*y + (g2^14*t^7.444*y)/g1^10 - (t^7.667*y)/(g1^6*g2^6) + 2*g1^19*g2^7*t^7.889*y + 2*g1^7*g2^19*t^7.889*y + (5*g1^3*t^8.333*y)/g2^9 + (5*g2^3*t^8.333*y)/g1^9 + (2*t^8.556*y)/(g1^5*g2^17) + (2*t^8.556*y)/(g1^17*g2^5) + (2*g1^20*t^8.778*y)/g2^4 + 6*g1^8*g2^8*t^8.778*y + (2*g2^20*t^8.778*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46344 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{4}$ + ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ 0.6304 0.823 0.766 [M:[0.9729, 0.7704, 0.7161, 1.0271], q:[0.7432, 0.2839], qb:[0.4322, 0.4864], phi:[0.5136]] 2*t^2.148 + 2*t^2.311 + t^2.756 + 2*t^3.081 + t^3.244 + t^3.526 + t^3.689 + t^4.134 + 4*t^4.296 + 5*t^4.459 + 3*t^4.622 + 2*t^4.904 + 2*t^5.067 + 4*t^5.23 + 5*t^5.392 + t^5.512 + t^5.555 + 2*t^5.674 + 4*t^5.837 - t^6. - t^4.541/y - t^4.541*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45950 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 0.6365 0.835 0.7622 [M:[0.9558, 0.739, 0.739], q:[0.739, 0.3052], qb:[0.4338, 0.4338], phi:[0.5221]] 4*t^2.217 + t^2.603 + t^2.868 + t^3.132 + t^3.397 + 2*t^3.518 + 3*t^4.169 + 10*t^4.434 + 4*t^4.819 + 4*t^5.084 + t^5.205 + 4*t^5.349 + t^5.47 + 2*t^5.614 + 9*t^5.735 - 4*t^6. - t^4.566/y - t^4.566*y detail