Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46301 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ 0.6851 0.8931 0.7671 [X:[], M:[0.828, 0.672, 0.672], q:[0.75, 0.422], qb:[0.422, 0.4061], phi:[0.5]] [X:[], M:[[1], [-1], [-1]], q:[[0], [-1]], qb:[[-1], [2]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ -1 2*t^2.02 + 3*t^2.48 + t^2.53 + t^3. + t^3.47 + t^3.52 + t^3.94 + 6*t^4.03 + 6*t^4.5 + 2*t^4.55 + 6*t^4.97 + 5*t^5.02 + t^5.06 + 5*t^5.48 + 3*t^5.53 + 3*t^5.95 - t^6. + 9*t^6.05 + 3*t^6.42 + 15*t^6.52 + 6*t^6.56 + t^6.94 + 9*t^6.98 + 9*t^7.03 + 2*t^7.08 + t^7.4 + 7*t^7.45 + 10*t^7.5 + 7*t^7.55 + t^7.6 + t^7.87 + 10*t^7.97 - 3*t^8.02 + 18*t^8.06 + 6*t^8.44 - 8*t^8.48 + 17*t^8.53 + 9*t^8.58 + 6*t^8.9 - t^4.5/y - (2*t^6.52)/y - t^6.98/y + t^7.03/y + (6*t^7.5)/y + (2*t^7.55)/y + (3*t^7.97)/y + (6*t^8.02)/y + (7*t^8.48)/y + (5*t^8.95)/y - t^4.5*y - 2*t^6.52*y - t^6.98*y + t^7.03*y + 6*t^7.5*y + 2*t^7.55*y + 3*t^7.97*y + 6*t^8.02*y + 7*t^8.48*y + 5*t^8.95*y (2*t^2.02)/g1 + 3*g1*t^2.48 + t^2.53/g1^2 + t^3. + g1^2*t^3.47 + t^3.52/g1 + g1^4*t^3.94 + (6*t^4.03)/g1^2 + 6*t^4.5 + (2*t^4.55)/g1^3 + 6*g1^2*t^4.97 + (5*t^5.02)/g1 + t^5.06/g1^4 + 5*g1*t^5.48 + (3*t^5.53)/g1^2 + 3*g1^3*t^5.95 - t^6. + (9*t^6.05)/g1^3 + 3*g1^5*t^6.42 + (15*t^6.52)/g1 + (6*t^6.56)/g1^4 + g1^4*t^6.94 + 9*g1*t^6.98 + (9*t^7.03)/g1^2 + (2*t^7.08)/g1^5 + g1^6*t^7.4 + 7*g1^3*t^7.45 + 10*t^7.5 + (7*t^7.55)/g1^3 + t^7.6/g1^6 + g1^8*t^7.87 + 10*g1^2*t^7.97 - (3*t^8.02)/g1 + (18*t^8.06)/g1^4 + 6*g1^4*t^8.44 - 8*g1*t^8.48 + (17*t^8.53)/g1^2 + (9*t^8.58)/g1^5 + 6*g1^6*t^8.9 - t^4.5/y - (2*t^6.52)/(g1*y) - (g1*t^6.98)/y + t^7.03/(g1^2*y) + (6*t^7.5)/y + (2*t^7.55)/(g1^3*y) + (3*g1^2*t^7.97)/y + (6*t^8.02)/(g1*y) + (7*g1*t^8.48)/y + (5*g1^3*t^8.95)/y - t^4.5*y - (2*t^6.52*y)/g1 - g1*t^6.98*y + (t^7.03*y)/g1^2 + 6*t^7.5*y + (2*t^7.55*y)/g1^3 + 3*g1^2*t^7.97*y + (6*t^8.02*y)/g1 + 7*g1*t^8.48*y + 5*g1^3*t^8.95*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46529 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ 0.6431 0.8462 0.76 [X:[], M:[0.75, 0.75, 0.75], q:[0.75, 0.5], qb:[0.5, 0.25], phi:[0.5]] 5*t^2.25 + 4*t^3. + t^3.75 + 18*t^4.5 + 18*t^5.25 + 6*t^6. - t^4.5/y - t^4.5*y detail {a: 1317/2048, c: 1733/2048, M1: 3/4, M2: 3/4, M3: 3/4, q1: 3/4, q2: 1/2, qb1: 1/2, qb2: 1/4, phi1: 1/2}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45941 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 0.6643 0.8518 0.7799 [X:[], M:[0.8278, 0.6722], q:[0.75, 0.4222], qb:[0.4222, 0.4056], phi:[0.5]] t^2.02 + 3*t^2.48 + t^2.53 + t^3. + t^3.47 + t^3.52 + t^3.93 + t^3.98 + 4*t^4.03 + 3*t^4.5 + t^4.55 + 6*t^4.97 + 4*t^5.02 + t^5.07 + 4*t^5.48 + 2*t^5.53 + 2*t^5.95 - t^4.5/y - t^4.5*y detail