Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46286 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_2\tilde{q}_1$ + $ M_2q_1\tilde{q}_1$ + $ M_3\phi_1\tilde{q}_1^2$ + $ M_4\phi_1\tilde{q}_2^2$ 0.6895 0.8744 0.7885 [X:[], M:[0.695, 0.6931, 0.6912, 0.6987], q:[0.8263, 0.8263], qb:[0.4806, 0.4769], phi:[0.3475]] [X:[], M:[[-4, -4], [-7, -1], [-10, 2], [2, -10]], q:[[1, 1], [1, 1]], qb:[[6, 0], [0, 6]], phi:[[-2, -2]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_1$, $ \phi_1^2$, $ M_2$, $ M_4$, $ \tilde{q}_1\tilde{q}_2$, $ q_1\tilde{q}_2$, $ q_2\tilde{q}_2$, $ q_1\tilde{q}_1$, $ M_2M_3$, $ M_3^2$, $ M_1M_2$, $ M_2\phi_1^2$, $ M_2^2$, $ M_1M_3$, $ M_3\phi_1^2$, $ M_1^2$, $ M_3M_4$, $ M_1\phi_1^2$, $ \phi_1^4$, $ M_1M_4$, $ M_4\phi_1^2$, $ M_2M_4$, $ M_4^2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ q_1q_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_4\tilde{q}_1\tilde{q}_2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ M_3q_1\tilde{q}_2$, $ M_3q_2\tilde{q}_2$, $ M_3q_1\tilde{q}_1$, $ M_1q_1\tilde{q}_2$, $ M_1q_2\tilde{q}_2$, $ M_2q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$ . -2 t^2.07 + 3*t^2.08 + t^2.1 + t^2.87 + 2*t^3.91 + t^3.92 + 2*t^4.15 + 5*t^4.16 + 4*t^4.17 + 3*t^4.18 + t^4.19 + 2*t^4.95 + 3*t^4.96 + t^4.97 + t^5.75 + 2*t^5.98 + 4*t^5.99 - 2*t^6. + t^6.01 + t^6.02 + t^6.22 + 4*t^6.23 + 9*t^6.24 + 11*t^6.25 + 2*t^6.26 + 5*t^6.27 + 2*t^6.28 + t^6.29 + 2*t^6.78 + t^6.79 + t^7.02 + 4*t^7.03 + 5*t^7.04 + t^7.05 + t^7.06 + 2*t^7.82 + 2*t^7.83 - t^7.84 + 3*t^8.06 + 2*t^8.07 - 3*t^8.08 + t^8.09 - 2*t^8.1 + t^8.29 + t^8.3 + 6*t^8.31 + 13*t^8.32 + 17*t^8.33 + 11*t^8.34 + 11*t^8.35 + 6*t^8.36 + 3*t^8.37 + t^8.38 + t^8.62 + 2*t^8.86 - t^8.87 - t^8.88 + t^8.89 - t^4.04/y - (2*t^6.12)/y - (2*t^6.13)/y - t^6.14/y + t^7.15/y + (4*t^7.16)/y + (2*t^7.17)/y + (3*t^7.18)/y + (3*t^7.95)/y + (5*t^7.96)/y + (2*t^7.97)/y - t^8.19/y - (4*t^8.2)/y - (6*t^8.21)/y - (3*t^8.22)/y - t^8.23/y + (2*t^8.98)/y + (7*t^8.99)/y - t^4.04*y - 2*t^6.12*y - 2*t^6.13*y - t^6.14*y + t^7.15*y + 4*t^7.16*y + 2*t^7.17*y + 3*t^7.18*y + 3*t^7.95*y + 5*t^7.96*y + 2*t^7.97*y - t^8.19*y - 4*t^8.2*y - 6*t^8.21*y - 3*t^8.22*y - t^8.23*y + 2*t^8.98*y + 7*t^8.99*y (g2^2*t^2.07)/g1^10 + (2*t^2.08)/(g1^4*g2^4) + t^2.08/(g1^7*g2) + (g1^2*t^2.1)/g2^10 + g1^6*g2^6*t^2.87 + 2*g1*g2^7*t^3.91 + g1^7*g2*t^3.92 + (g2*t^4.15)/g1^17 + (g2^4*t^4.15)/g1^20 + (2*t^4.16)/(g1^11*g2^5) + (3*t^4.16)/(g1^14*g2^2) + (4*t^4.17)/(g1^8*g2^8) + (2*t^4.18)/(g1^2*g2^14) + t^4.18/(g1^5*g2^11) + (g1^4*t^4.19)/g2^20 + (g2^5*t^4.95)/g1 + (g2^8*t^4.95)/g1^4 + 3*g1^2*g2^2*t^4.96 + (g1^8*t^4.97)/g2^4 + g1^12*g2^12*t^5.75 + (2*g2^9*t^5.98)/g1^9 + (3*g2^3*t^5.99)/g1^3 + (g2^6*t^5.99)/g1^6 - 2*t^6. - (g1^6*t^6.01)/g2^6 + (2*g1^3*t^6.01)/g2^3 + (g1^9*t^6.02)/g2^9 + (g2^6*t^6.22)/g1^30 + (3*t^6.23)/g1^24 + (g2^3*t^6.23)/g1^27 + (6*t^6.24)/(g1^18*g2^6) + (3*t^6.24)/(g1^21*g2^3) + (7*t^6.25)/(g1^12*g2^12) + (4*t^6.25)/(g1^15*g2^9) + (2*t^6.26)/(g1^9*g2^15) + t^6.27/(g1^3*g2^21) + (4*t^6.27)/(g1^6*g2^18) + (2*t^6.28)/g2^24 + (g1^6*t^6.29)/g2^30 + 2*g1^7*g2^13*t^6.78 + g1^13*g2^7*t^6.79 + (g2^10*t^7.02)/g1^14 + (3*g2^4*t^7.03)/g1^8 + (g2^7*t^7.03)/g1^11 + (4*t^7.04)/(g1^2*g2^2) + (g2*t^7.04)/g1^5 + (2*g1^4*t^7.05)/g2^8 - (g1*t^7.05)/g2^5 + (g1^10*t^7.06)/g2^14 - g1^5*g2^11*t^7.82 + 3*g1^2*g2^14*t^7.82 + 2*g1^8*g2^8*t^7.83 + g1^14*g2^2*t^7.84 - 2*g1^11*g2^5*t^7.84 + (g2^8*t^8.06)/g1^16 + (2*g2^11*t^8.06)/g1^19 - (2*g2^2*t^8.07)/g1^10 + (4*g2^5*t^8.07)/g1^13 - (5*t^8.08)/(g1^4*g2^4) + (2*t^8.08)/(g1^7*g2) + t^8.09/(g1*g2^7) + (2*g1^5*t^8.1)/g2^13 - (4*g1^2*t^8.1)/g2^10 + (g1^11*t^8.11)/g2^19 - (g1^8*t^8.11)/g2^16 + (g2^8*t^8.29)/g1^40 + (g2^5*t^8.3)/g1^37 + (3*t^8.31)/(g1^31*g2) + (3*g2^2*t^8.31)/g1^34 + (6*t^8.32)/(g1^25*g2^7) + (7*t^8.32)/(g1^28*g2^4) + (7*t^8.33)/(g1^19*g2^13) + (10*t^8.33)/(g1^22*g2^10) + (11*t^8.34)/(g1^16*g2^16) + (7*t^8.35)/(g1^10*g2^22) + (4*t^8.35)/(g1^13*g2^19) + (4*t^8.36)/(g1^4*g2^28) + (2*t^8.36)/(g1^7*g2^25) + (2*g1^2*t^8.37)/g2^34 + t^8.37/(g1*g2^31) + (g1^8*t^8.38)/g2^40 + g1^18*g2^18*t^8.62 + (2*g2^15*t^8.86)/g1^3 - 4*g1^6*g2^6*t^8.87 + 3*g1^3*g2^9*t^8.87 - 2*g1^12*t^8.88 + g1^9*g2^3*t^8.88 + (g1^15*t^8.89)/g2^3 - t^4.04/(g1^2*g2^2*y) - t^6.12/(g1^12*y) - t^6.12/(g1^9*g2^3*y) - (2*t^6.13)/(g1^6*g2^6*y) - t^6.14/(g2^12*y) + (g2*t^7.15)/(g1^17*y) + (2*t^7.16)/(g1^11*g2^5*y) + (2*t^7.16)/(g1^14*g2^2*y) + (2*t^7.17)/(g1^8*g2^8*y) + (2*t^7.18)/(g1^2*g2^14*y) + t^7.18/(g1^5*g2^11*y) + (g2^5*t^7.95)/(g1*y) + (2*g2^8*t^7.95)/(g1^4*y) + (g1^5*t^7.96)/(g2*y) + (4*g1^2*g2^2*t^7.96)/y + (2*g1^8*t^7.97)/(g2^4*y) - (g2^2*t^8.19)/(g1^22*y) - (3*t^8.2)/(g1^16*g2^4*y) - t^8.2/(g1^19*g2*y) - (4*t^8.21)/(g1^10*g2^10*y) - (2*t^8.21)/(g1^13*g2^7*y) - (2*t^8.22)/(g1^4*g2^16*y) - t^8.22/(g1^7*g2^13*y) - (g1^2*t^8.23)/(g2^22*y) + (2*g2^9*t^8.98)/(g1^9*y) + (5*g2^3*t^8.99)/(g1^3*y) + (2*g2^6*t^8.99)/(g1^6*y) - (t^4.04*y)/(g1^2*g2^2) - (t^6.12*y)/g1^12 - (t^6.12*y)/(g1^9*g2^3) - (2*t^6.13*y)/(g1^6*g2^6) - (t^6.14*y)/g2^12 + (g2*t^7.15*y)/g1^17 + (2*t^7.16*y)/(g1^11*g2^5) + (2*t^7.16*y)/(g1^14*g2^2) + (2*t^7.17*y)/(g1^8*g2^8) + (2*t^7.18*y)/(g1^2*g2^14) + (t^7.18*y)/(g1^5*g2^11) + (g2^5*t^7.95*y)/g1 + (2*g2^8*t^7.95*y)/g1^4 + (g1^5*t^7.96*y)/g2 + 4*g1^2*g2^2*t^7.96*y + (2*g1^8*t^7.97*y)/g2^4 - (g2^2*t^8.19*y)/g1^22 - (3*t^8.2*y)/(g1^16*g2^4) - (t^8.2*y)/(g1^19*g2) - (4*t^8.21*y)/(g1^10*g2^10) - (2*t^8.21*y)/(g1^13*g2^7) - (2*t^8.22*y)/(g1^4*g2^16) - (t^8.22*y)/(g1^7*g2^13) - (g1^2*t^8.23*y)/g2^22 + (2*g2^9*t^8.98*y)/g1^9 + (5*g2^3*t^8.99*y)/g1^3 + (2*g2^6*t^8.99*y)/g1^6


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45949 SU2adj1nf2 $\phi_1q_1q_2$ + $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ + $ M_2q_2\tilde{q}_1$ + $ M_2q_1\tilde{q}_1$ + $ M_3\phi_1\tilde{q}_1^2$ 0.6691 0.8364 0.8 [X:[], M:[0.7014, 0.6923, 0.6833], q:[0.8247, 0.8247], qb:[0.483, 0.4649], phi:[0.3507]] t^2.05 + t^2.08 + 2*t^2.1 + t^2.84 + t^3.84 + 2*t^3.87 + t^3.92 + t^4.1 + t^4.13 + 3*t^4.15 + 2*t^4.18 + 3*t^4.21 + t^4.89 + t^4.92 + 3*t^4.95 + t^5.69 + t^5.89 + 3*t^5.92 + 3*t^5.95 + 3*t^5.97 - 2*t^6. - t^4.05/y - t^4.05*y detail