Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46283 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 0.6564 0.8431 0.7786 [M:[1.1623, 0.6755, 0.6755], q:[0.75, 0.4123], qb:[0.4123, 0.4255], phi:[0.5]] [M:[[-1], [2], [2]], q:[[0], [-1]], qb:[[-1], [2]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{1}q_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }M_{2}q_{1}q_{2}$, ${ }M_{3}q_{1}q_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}^{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ ${}M_{3}\phi_{1}q_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ 1 2*t^2.026 + t^2.474 + t^2.513 + t^3. + 3*t^3.487 + t^3.526 + t^3.974 + 2*t^4.013 + 4*t^4.053 + 2*t^4.5 + 2*t^4.54 + t^4.947 + t^4.987 + 3*t^5.026 + t^5.474 + 7*t^5.513 + 2*t^5.553 + t^5.96 + t^6. + 3*t^6.04 + 6*t^6.079 + t^6.447 + 2*t^6.487 + 5*t^6.526 + 4*t^6.566 + 5*t^6.974 + 3*t^7.013 + 6*t^7.053 + t^7.421 + 2*t^7.5 + 13*t^7.54 + 4*t^7.579 + t^7.947 + t^7.987 + 2*t^8.026 + 6*t^8.066 + 9*t^8.106 + t^8.434 - t^8.474 + t^8.513 + 7*t^8.553 + 6*t^8.593 + t^8.921 - t^4.5/y - (2*t^6.526)/y + t^7.013/y + t^7.053/y + (2*t^7.5)/y + (2*t^7.54)/y + (2*t^8.026)/y + (3*t^8.474)/y + (7*t^8.513)/y - t^8.553/y + (3*t^8.96)/y - t^4.5*y - 2*t^6.526*y + t^7.013*y + t^7.053*y + 2*t^7.5*y + 2*t^7.54*y + 2*t^8.026*y + 3*t^8.474*y + 7*t^8.513*y - t^8.553*y + 3*t^8.96*y 2*g1^2*t^2.026 + t^2.474/g1^2 + g1*t^2.513 + t^3. + (3*t^3.487)/g1 + g1^2*t^3.526 + t^3.974/g1^2 + 2*g1*t^4.013 + 4*g1^4*t^4.053 + 2*t^4.5 + 2*g1^3*t^4.54 + t^4.947/g1^4 + t^4.987/g1 + 3*g1^2*t^5.026 + t^5.474/g1^2 + 7*g1*t^5.513 + 2*g1^4*t^5.553 + t^5.96/g1^3 + t^6. + 3*g1^3*t^6.04 + 6*g1^6*t^6.079 + t^6.447/g1^4 + (2*t^6.487)/g1 + 5*g1^2*t^6.526 + 4*g1^5*t^6.566 + (5*t^6.974)/g1^2 + 3*g1*t^7.013 + 6*g1^4*t^7.053 + t^7.421/g1^6 + 2*t^7.5 + 13*g1^3*t^7.54 + 4*g1^6*t^7.579 + t^7.947/g1^4 + t^7.987/g1 + 2*g1^2*t^8.026 + 6*g1^5*t^8.066 + 9*g1^8*t^8.106 + t^8.434/g1^5 - t^8.474/g1^2 + g1*t^8.513 + 7*g1^4*t^8.553 + 6*g1^7*t^8.593 + t^8.921/g1^6 - t^4.5/y - (2*g1^2*t^6.526)/y + (g1*t^7.013)/y + (g1^4*t^7.053)/y + (2*t^7.5)/y + (2*g1^3*t^7.54)/y + (2*g1^2*t^8.026)/y + (3*t^8.474)/(g1^2*y) + (7*g1*t^8.513)/y - (g1^4*t^8.553)/y + (3*t^8.96)/(g1^3*y) - t^4.5*y - 2*g1^2*t^6.526*y + g1*t^7.013*y + g1^4*t^7.053*y + 2*t^7.5*y + 2*g1^3*t^7.54*y + 2*g1^2*t^8.026*y + (3*t^8.474*y)/g1^2 + 7*g1*t^8.513*y - g1^4*t^8.553*y + (3*t^8.96*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46658 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}q_{2}^{2}$ 0.6772 0.8843 0.7658 [M:[1.1628, 0.6744, 0.6744, 0.6744], q:[0.75, 0.4128], qb:[0.4128, 0.4244], phi:[0.5]] 3*t^2.023 + t^2.477 + t^2.512 + t^3. + 3*t^3.488 + t^3.523 + 2*t^4.012 + 7*t^4.046 + 3*t^4.5 + 3*t^4.535 + t^4.954 + t^4.988 + 4*t^5.023 + t^5.477 + 10*t^5.512 + 3*t^5.546 + t^5.965 - t^6. - t^4.5/y - t^4.5*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46033 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$ 0.6567 0.843 0.7791 [M:[1.1525, 0.6728, 0.6949], q:[0.75, 0.4246], qb:[0.4025, 0.4228], phi:[0.5]] t^2.019 + t^2.085 + t^2.476 + t^2.481 + t^3. + 2*t^3.458 + t^3.519 + t^3.524 + t^3.976 + 2*t^4.037 + t^4.042 + t^4.048 + t^4.103 + t^4.169 + t^4.495 + t^4.5 + t^4.561 + t^4.566 + t^4.952 + t^4.958 + t^4.963 + t^5.019 + t^5.085 + 3*t^5.476 + t^5.481 + t^5.537 + 3*t^5.542 + t^5.603 + t^5.609 + t^5.934 + t^5.939 + t^5.995 - t^6. - t^4.5/y - t^4.5*y detail