Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46261 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ 0.57 0.695 0.8201 [M:[1.0, 1.0], q:[0.7, 0.9], qb:[0.3, 0.5], phi:[0.4]] [M:[[0], [0]], q:[[0], [0]], qb:[[0], [0]], phi:[[0]]] 0 {a: 57/100, c: 139/200, M1: 1, M2: 1, q1: 7/10, q2: 9/10, qb1: 3/10, qb2: 1/2, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{2}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{4}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}M_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ 4 2*t^2.4 + 2*t^3. + 3*t^3.6 + 2*t^4.2 + 4*t^4.8 + 2*t^5.4 + 4*t^6. + 4*t^6.6 + 7*t^7.2 + 4*t^7.8 + 4*t^8.4 - t^4.2/y - t^6.6/y + (2*t^7.8)/y + (4*t^8.4)/y - t^4.2*y - t^6.6*y + 2*t^7.8*y + 4*t^8.4*y 2*t^2.4 + 2*t^3. + 3*t^3.6 + 2*t^4.2 + 4*t^4.8 + 2*t^5.4 + 4*t^6. + 4*t^6.6 + 7*t^7.2 + 4*t^7.8 + 4*t^8.4 - t^4.2/y - t^6.6/y + (2*t^7.8)/y + (4*t^8.4)/y - t^4.2*y - t^6.6*y + 2*t^7.8*y + 4*t^8.4*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46431 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{1}M_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ 0.5535 0.666 0.8311 [M:[1.0, 1.0, 1.2], q:[0.7, 0.9], qb:[0.3, 0.5], phi:[0.4]] t^2.4 + 2*t^3. + 4*t^3.6 + 2*t^4.2 + 2*t^4.8 + 2*t^6. - t^4.2/y - t^4.2*y detail {a: 1107/2000, c: 333/500, M1: 1, M2: 1, M3: 6/5, q1: 7/10, q2: 9/10, qb1: 3/10, qb2: 1/2, phi1: 2/5}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46042 SU2adj1nf2 ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 0.588 0.713 0.8247 [M:[1.0, 0.8478], q:[0.837, 0.7935], qb:[0.3152, 0.5761], phi:[0.3696]] t^2.217 + t^2.543 + t^2.674 + t^3. + t^3.326 + t^3.783 + t^4.109 + t^4.239 + t^4.435 + t^4.565 + t^4.761 + 2*t^4.891 + t^5.087 + t^5.217 + t^5.348 + t^5.543 + t^5.87 - t^4.109/y - t^4.109*y detail {a: 1731/2944, c: 2099/2944, M1: 1, M2: 39/46, q1: 77/92, q2: 73/92, qb1: 29/92, qb2: 53/92, phi1: 17/46}