Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46230 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$ + ${ }M_{4}\phi_{1}^{2}$ | 0.6484 | 0.7959 | 0.8147 | [M:[0.7108, 0.6962, 0.6962, 1.2965], q:[0.4724, 0.8169], qb:[0.8314, 0.4724], phi:[0.3518]] | [M:[[1, -5], [-1, -3], [-1, -3], [0, 4]], q:[[0, 3], [-1, 2]], qb:[[1, 0], [0, 3]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{4}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{4}$, ${ }M_{3}\phi_{1}q_{1}^{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}\tilde{q}_{2}^{2}$ | ${}$ | -4 | 2*t^2.089 + t^2.132 + t^2.834 + t^3.868 + 4*t^3.889 + 3*t^4.177 + 2*t^4.221 + t^4.265 + 2*t^4.923 + t^4.945 + t^4.967 + t^5.668 + 2*t^5.956 + 6*t^5.978 - 4*t^6. + 2*t^6.022 + 4*t^6.266 + 3*t^6.31 + 2*t^6.353 + t^6.397 + t^6.702 + 4*t^6.724 + 3*t^7.012 - 2*t^7.055 - t^7.077 + t^7.099 + t^7.735 + 4*t^7.757 + 6*t^7.779 - t^7.801 + 3*t^8.045 + 8*t^8.067 - 8*t^8.089 + 3*t^8.111 - 4*t^8.132 + 2*t^8.154 + 5*t^8.355 + 4*t^8.399 + 3*t^8.442 + 2*t^8.486 + t^8.503 + t^8.529 + 2*t^8.791 + 5*t^8.812 - 4*t^8.834 - t^4.055/y - (2*t^6.144)/y - t^6.188/y + t^7.177/y + (2*t^7.221)/y + (3*t^7.923)/y + (3*t^7.967)/y - (3*t^8.233)/y - (2*t^8.276)/y - t^8.32/y + (2*t^8.956)/y + (8*t^8.978)/y - t^4.055*y - 2*t^6.144*y - t^6.188*y + t^7.177*y + 2*t^7.221*y + 3*t^7.923*y + 3*t^7.967*y - 3*t^8.233*y - 2*t^8.276*y - t^8.32*y + 2*t^8.956*y + 8*t^8.978*y | (2*t^2.089)/(g1*g2^3) + (g1*t^2.132)/g2^5 + g2^6*t^2.834 + (g2^5*t^3.868)/g1 + 4*g2^4*t^3.889 + (3*t^4.177)/(g1^2*g2^6) + (2*t^4.221)/g2^8 + (g1^2*t^4.265)/g2^10 + (2*g2^3*t^4.923)/g1 + g2^2*t^4.945 + g1*g2*t^4.967 + g2^12*t^5.668 + (2*g2^2*t^5.956)/g1^2 + (6*g2*t^5.978)/g1 - 4*t^6. + (2*g1*t^6.022)/g2 + (4*t^6.266)/(g1^3*g2^9) + (3*t^6.31)/(g1*g2^11) + (2*g1*t^6.353)/g2^13 + (g1^3*t^6.397)/g2^15 + (g2^11*t^6.702)/g1 + 4*g2^10*t^6.724 + (3*t^7.012)/g1^2 - (2*t^7.055)/g2^2 - (g1*t^7.077)/g2^3 + (g1^2*t^7.099)/g2^4 + (g2^10*t^7.735)/g1^2 + (4*g2^9*t^7.757)/g1 + 6*g2^8*t^7.779 - g1*g2^7*t^7.801 + (3*t^8.045)/(g1^3*g2) + (8*t^8.067)/(g1^2*g2^2) - (8*t^8.089)/(g1*g2^3) + (3*t^8.111)/g2^4 - (4*g1*t^8.132)/g2^5 + (2*g1^2*t^8.154)/g2^6 + (5*t^8.355)/(g1^4*g2^12) + (4*t^8.399)/(g1^2*g2^14) + (3*t^8.442)/g2^16 + (2*g1^2*t^8.486)/g2^18 + g2^18*t^8.503 + (g1^4*t^8.529)/g2^20 + (2*g2^8*t^8.791)/g1^2 + (5*g2^7*t^8.812)/g1 - 4*g2^6*t^8.834 - t^4.055/(g2^2*y) - (2*t^6.144)/(g1*g2^5*y) - (g1*t^6.188)/(g2^7*y) + t^7.177/(g1^2*g2^6*y) + (2*t^7.221)/(g2^8*y) + (3*g2^3*t^7.923)/(g1*y) + (3*g1*g2*t^7.967)/y - (3*t^8.233)/(g1^2*g2^8*y) - (2*t^8.276)/(g2^10*y) - (g1^2*t^8.32)/(g2^12*y) + (2*g2^2*t^8.956)/(g1^2*y) + (8*g2*t^8.978)/(g1*y) - (t^4.055*y)/g2^2 - (2*t^6.144*y)/(g1*g2^5) - (g1*t^6.188*y)/g2^7 + (t^7.177*y)/(g1^2*g2^6) + (2*t^7.221*y)/g2^8 + (3*g2^3*t^7.923*y)/g1 + 3*g1*g2*t^7.967*y - (3*t^8.233*y)/(g1^2*g2^8) - (2*t^8.276*y)/g2^10 - (g1^2*t^8.32*y)/g2^12 + (2*g2^2*t^8.956*y)/g1^2 + (8*g2*t^8.978*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46009 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{3}\tilde{q}_{2}^{2}$ | 0.6689 | 0.835 | 0.8011 | [M:[0.7054, 0.6926, 0.6926], q:[0.4758, 0.8189], qb:[0.8316, 0.4758], phi:[0.3495]] | 2*t^2.078 + t^2.097 + t^2.116 + t^2.855 + t^3.884 + 3*t^3.903 + 3*t^4.156 + 2*t^4.175 + 3*t^4.194 + t^4.213 + t^4.232 + 2*t^4.932 + 2*t^4.952 + t^4.971 + t^5.709 + 2*t^5.962 + 5*t^5.981 - t^6. - t^4.048/y - t^4.048*y | detail |