Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46227 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1^2$ + $ M_3q_1\tilde{q}_2$ 0.608 0.7955 0.7643 [X:[], M:[0.9286, 0.9286, 0.8213], q:[0.7321, 0.3393], qb:[0.3393, 0.4465], phi:[0.5357]] [X:[], M:[[4], [4], [-18]], q:[[1], [-5]], qb:[[-5], [17]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \tilde{q}_1\tilde{q}_2$, $ M_3$, $ M_1$, $ M_2$, $ \phi_1^2$, $ \phi_1q_2^2$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ q_2\tilde{q}_1^2\tilde{q}_2$, $ M_3q_2\tilde{q}_1$, $ q_2^2\tilde{q}_2^2$, $ q_2\tilde{q}_1\tilde{q}_2^2$, $ \tilde{q}_1^2\tilde{q}_2^2$, $ \phi_1q_1q_2$, $ \phi_1q_1\tilde{q}_1$, $ M_2q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_3\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ \phi_1q_1\tilde{q}_2$, $ M_2q_2\tilde{q}_2$, $ M_1\tilde{q}_1\tilde{q}_2$, $ M_2\tilde{q}_1\tilde{q}_2$, $ M_1M_3$, $ M_2M_3$, $ \phi_1^2q_2\tilde{q}_1$, $ M_1^2$, $ M_1M_2$, $ M_2^2$, $ \phi_1^2q_2\tilde{q}_2$, $ \phi_1^2\tilde{q}_1\tilde{q}_2$, $ M_3\phi_1^2$, $ \phi_1q_2^3\tilde{q}_1$, $ \phi_1q_2^2\tilde{q}_1^2$, $ \phi_1q_2\tilde{q}_1^3$ $\phi_1q_2^3\tilde{q}_2$, $ 2\phi_1q_2^2\tilde{q}_1\tilde{q}_2$, $ 2\phi_1q_2\tilde{q}_1^2\tilde{q}_2$, $ \phi_1\tilde{q}_1^3\tilde{q}_2$ 3 t^2.04 + 2*t^2.36 + t^2.46 + 2*t^2.79 + t^3.21 + 3*t^3.64 + 2*t^3.96 + t^4.07 + t^4.29 + 2*t^4.39 + t^4.5 + 3*t^4.71 + 4*t^4.82 + t^4.93 + 4*t^5.14 + 3*t^5.25 + 4*t^5.57 + 2*t^5.68 + 3*t^6. + 4*t^6.11 + 2*t^6.32 + 6*t^6.43 + t^6.54 + 2*t^6.64 + 5*t^6.75 + 4*t^6.86 + t^6.96 + 5*t^7.07 + 3*t^7.18 + 8*t^7.29 + t^7.39 + 5*t^7.5 + 6*t^7.61 + 4*t^7.71 + 7*t^7.93 + 3*t^8.04 + 3*t^8.14 + 2*t^8.25 + 3*t^8.36 + 3*t^8.46 + 5*t^8.57 + 2*t^8.68 + 7*t^8.89 - t^4.61/y - t^7.07/y + t^7.39/y + t^7.5/y + t^7.71/y + (5*t^7.82)/y + (5*t^8.14)/y + (3*t^8.25)/y + (3*t^8.57)/y + (4*t^8.68)/y - t^4.61*y - t^7.07*y + t^7.39*y + t^7.5*y + t^7.71*y + 5*t^7.82*y + 5*t^8.14*y + 3*t^8.25*y + 3*t^8.57*y + 4*t^8.68*y t^2.04/g1^10 + 2*g1^12*t^2.36 + t^2.46/g1^18 + 2*g1^4*t^2.79 + t^3.21/g1^4 + (3*t^3.64)/g1^12 + 2*g1^10*t^3.96 + t^4.07/g1^20 + g1^32*t^4.29 + 2*g1^2*t^4.39 + t^4.5/g1^28 + 3*g1^24*t^4.71 + (4*t^4.82)/g1^6 + t^4.93/g1^36 + 4*g1^16*t^5.14 + (3*t^5.25)/g1^14 + 4*g1^8*t^5.57 + (2*t^5.68)/g1^22 + 3*t^6. + (4*t^6.11)/g1^30 + 2*g1^22*t^6.32 + (6*t^6.43)/g1^8 + t^6.54/g1^38 + 2*g1^44*t^6.64 + 5*g1^14*t^6.75 + (4*t^6.86)/g1^16 + t^6.96/g1^46 + 5*g1^36*t^7.07 + 3*g1^6*t^7.18 + (8*t^7.29)/g1^24 + t^7.39/g1^54 + 5*g1^28*t^7.5 + (6*t^7.61)/g1^2 + (4*t^7.71)/g1^32 + 7*g1^20*t^7.93 + (3*t^8.04)/g1^10 + (3*t^8.14)/g1^40 + 2*g1^42*t^8.25 + 3*g1^12*t^8.36 + (3*t^8.46)/g1^18 + (4*t^8.57)/g1^48 + g1^64*t^8.57 + 2*g1^34*t^8.68 + (7*t^8.89)/g1^26 - t^4.61/(g1^2*y) - t^7.07/(g1^20*y) + (g1^2*t^7.39)/y + t^7.5/(g1^28*y) + (g1^24*t^7.71)/y + (5*t^7.82)/(g1^6*y) + (5*g1^16*t^8.14)/y + (3*t^8.25)/(g1^14*y) + (3*g1^8*t^8.57)/y + (4*t^8.68)/(g1^22*y) - (t^4.61*y)/g1^2 - (t^7.07*y)/g1^20 + g1^2*t^7.39*y + (t^7.5*y)/g1^28 + g1^24*t^7.71*y + (5*t^7.82*y)/g1^6 + 5*g1^16*t^8.14*y + (3*t^8.25*y)/g1^14 + 3*g1^8*t^8.57*y + (4*t^8.68*y)/g1^22


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46041 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ \phi_1q_1^2$ + $ M_1\phi_1^2$ + $ M_2\phi_1^2$ 0.594 0.7723 0.7691 [X:[], M:[0.9215, 0.9215], q:[0.7304, 0.3481], qb:[0.3481, 0.4164], phi:[0.5392]] t^2.09 + 2*t^2.29 + 2*t^2.76 + t^3.24 + t^3.44 + 3*t^3.71 + 2*t^3.91 + t^4.12 + t^4.18 + 2*t^4.38 + 3*t^4.59 + 2*t^4.85 + 4*t^5.06 + t^5.32 + 5*t^5.53 + 2*t^5.73 + t^5.79 + 3*t^6. - t^4.62/y - t^4.62*y detail