Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
4621 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{6}M_{7}$ + ${ }M_{2}M_{8}$ 0.7013 0.8657 0.8101 [M:[0.9042, 1.0684, 0.9316, 1.0411, 0.9589, 1.0137, 0.9863, 0.9316], q:[0.5616, 0.5342], qb:[0.5068, 0.4247], phi:[0.4932]] [M:[[14], [-10], [10], [-6], [6], [-2], [2], [10]], q:[[-9], [-5]], qb:[[-1], [11]], phi:[[1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{3}$, ${ }M_{8}$, ${ }M_{5}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}M_{8}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{5}$, ${ }M_{3}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{3}M_{5}$, ${ }M_{1}M_{7}$, ${ }M_{5}M_{8}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}M_{7}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{3}M_{4}$, ${ }M_{7}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{7}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$ ${}$ -3 t^2.713 + 2*t^2.795 + t^2.877 + 2*t^2.959 + t^3.123 + t^4.028 + t^4.274 + t^4.356 + t^4.438 + t^4.521 + t^4.603 + 2*t^4.685 + t^4.767 + t^4.849 + t^5.425 + 2*t^5.507 + 3*t^5.589 + 3*t^5.672 + 4*t^5.754 + 2*t^5.836 + 3*t^5.918 - 3*t^6. - t^6.082 - t^6.164 - t^6.328 - t^6.411 + t^6.74 + 2*t^6.823 + t^6.905 + 3*t^6.987 + t^7.069 + 3*t^7.151 + 4*t^7.233 + 3*t^7.315 + 4*t^7.397 + 3*t^7.479 + 2*t^7.562 + 4*t^7.644 + t^7.808 - 2*t^7.89 + t^8.056 + t^8.138 + 2*t^8.22 + 4*t^8.302 + 6*t^8.384 + 5*t^8.466 + 6*t^8.548 + 5*t^8.63 + 4*t^8.713 - 4*t^8.795 - 2*t^8.877 - 8*t^8.959 - t^4.479/y - t^7.192/y - t^7.274/y - t^7.438/y + t^7.521/y + t^7.685/y + t^7.767/y + (2*t^8.507)/y + (2*t^8.589)/y + (4*t^8.672)/y + (4*t^8.754)/y + (3*t^8.836)/y + (3*t^8.918)/y - t^4.479*y - t^7.192*y - t^7.274*y - t^7.438*y + t^7.521*y + t^7.685*y + t^7.767*y + 2*t^8.507*y + 2*t^8.589*y + 4*t^8.672*y + 4*t^8.754*y + 3*t^8.836*y + 3*t^8.918*y g1^14*t^2.713 + 2*g1^10*t^2.795 + g1^6*t^2.877 + 2*g1^2*t^2.959 + t^3.123/g1^6 + g1^23*t^4.028 + g1^11*t^4.274 + g1^7*t^4.356 + g1^3*t^4.438 + t^4.521/g1 + t^4.603/g1^5 + (2*t^4.685)/g1^9 + t^4.767/g1^13 + t^4.849/g1^17 + g1^28*t^5.425 + 2*g1^24*t^5.507 + 3*g1^20*t^5.589 + 3*g1^16*t^5.672 + 4*g1^12*t^5.754 + 2*g1^8*t^5.836 + 3*g1^4*t^5.918 - 3*t^6. - t^6.082/g1^4 - t^6.164/g1^8 - t^6.328/g1^16 - t^6.411/g1^20 + g1^37*t^6.74 + 2*g1^33*t^6.823 + g1^29*t^6.905 + 3*g1^25*t^6.987 + g1^21*t^7.069 + 3*g1^17*t^7.151 + 4*g1^13*t^7.233 + 3*g1^9*t^7.315 + 4*g1^5*t^7.397 + 3*g1*t^7.479 + (2*t^7.562)/g1^3 + (4*t^7.644)/g1^7 + t^7.808/g1^15 - (2*t^7.89)/g1^19 + g1^46*t^8.056 + g1^42*t^8.138 + 2*g1^38*t^8.22 + 4*g1^34*t^8.302 + 6*g1^30*t^8.384 + 5*g1^26*t^8.466 + 6*g1^22*t^8.548 + 5*g1^18*t^8.63 + 4*g1^14*t^8.713 - 4*g1^10*t^8.795 - 2*g1^6*t^8.877 - 8*g1^2*t^8.959 - (g1*t^4.479)/y - (g1^15*t^7.192)/y - (g1^11*t^7.274)/y - (g1^3*t^7.438)/y + t^7.521/(g1*y) + t^7.685/(g1^9*y) + t^7.767/(g1^13*y) + (2*g1^24*t^8.507)/y + (2*g1^20*t^8.589)/y + (4*g1^16*t^8.672)/y + (4*g1^12*t^8.754)/y + (3*g1^8*t^8.836)/y + (3*g1^4*t^8.918)/y - g1*t^4.479*y - g1^15*t^7.192*y - g1^11*t^7.274*y - g1^3*t^7.438*y + (t^7.521*y)/g1 + (t^7.685*y)/g1^9 + (t^7.767*y)/g1^13 + 2*g1^24*t^8.507*y + 2*g1^20*t^8.589*y + 4*g1^16*t^8.672*y + 4*g1^12*t^8.754*y + 3*g1^8*t^8.836*y + 3*g1^4*t^8.918*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
2543 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{5}$ + ${ }M_{2}M_{3}$ + ${ }M_{6}q_{1}\tilde{q}_{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{6}M_{7}$ 0.6959 0.8548 0.8141 [M:[0.9339, 1.0472, 0.9528, 1.0283, 0.9717, 1.0094, 0.9906], q:[0.5425, 0.5236], qb:[0.5047, 0.4481], phi:[0.4953]] t^2.802 + t^2.858 + t^2.915 + 2*t^2.972 + t^3.085 + t^3.142 + t^4.174 + t^4.344 + t^4.401 + t^4.457 + t^4.514 + t^4.571 + 2*t^4.628 + t^4.684 + t^4.741 + t^5.603 + t^5.66 + t^5.717 + 2*t^5.773 + 2*t^5.83 + 2*t^5.887 + 3*t^5.943 - 2*t^6. - t^4.486/y - t^4.486*y detail