Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
46192 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 0.6432 0.8469 0.7595 [X:[], M:[0.7588, 0.7412, 0.7412], q:[0.75, 0.4912], qb:[0.25, 0.5088], phi:[0.5]] [X:[], M:[[1], [-1], [-1]], q:[[0], [-1]], qb:[[0], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{3}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$ ${}\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}^{3}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 5 3*t^2.22 + 2*t^2.28 + 4*t^3. + t^3.72 + 7*t^4.45 + 7*t^4.5 + 4*t^4.55 + 11*t^5.22 + 7*t^5.28 + 2*t^5.95 + 5*t^6. - t^6.05 + 13*t^6.67 + 14*t^6.72 + 7*t^6.78 + 6*t^6.83 + 22*t^7.45 + 15*t^7.5 + 10*t^7.55 + 4*t^8.17 + 6*t^8.22 - t^8.28 - 2*t^8.33 + 22*t^8.89 + 22*t^8.95 - t^4.5/y - (2*t^6.72)/y - t^6.78/y + (3*t^7.45)/y + (6*t^7.5)/y + t^7.55/y + (13*t^8.22)/y + (10*t^8.28)/y - t^4.5*y - 2*t^6.72*y - t^6.78*y + 3*t^7.45*y + 6*t^7.5*y + t^7.55*y + 13*t^8.22*y + 10*t^8.28*y (3*t^2.22)/g1 + 2*g1*t^2.28 + 4*t^3. + t^3.72/g1 + (7*t^4.45)/g1^2 + 7*t^4.5 + 4*g1^2*t^4.55 + (11*t^5.22)/g1 + 7*g1*t^5.28 + (2*t^5.95)/g1^2 + 5*t^6. - g1^2*t^6.05 + (13*t^6.67)/g1^3 + (14*t^6.72)/g1 + 7*g1*t^6.78 + 6*g1^3*t^6.83 + (22*t^7.45)/g1^2 + 15*t^7.5 + 10*g1^2*t^7.55 + (4*t^8.17)/g1^3 + (6*t^8.22)/g1 - g1*t^8.28 - 2*g1^3*t^8.33 + (22*t^8.89)/g1^4 + (22*t^8.95)/g1^2 - t^4.5/y - (2*t^6.72)/(g1*y) - (g1*t^6.78)/y + (3*t^7.45)/(g1^2*y) + (6*t^7.5)/y + (g1^2*t^7.55)/y + (13*t^8.22)/(g1*y) + (10*g1*t^8.28)/y - t^4.5*y - (2*t^6.72*y)/g1 - g1*t^6.78*y + (3*t^7.45*y)/g1^2 + 6*t^7.5*y + g1^2*t^7.55*y + (13*t^8.22*y)/g1 + 10*g1*t^8.28*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
46604 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$ 0.6621 0.8809 0.7517 [X:[], M:[0.75, 0.75, 0.75, 0.75], q:[0.75, 0.5], qb:[0.25, 0.5], phi:[0.5]] 6*t^2.25 + 4*t^3. + 24*t^4.5 + 22*t^5.25 + t^6. - t^4.5/y - t^4.5*y detail {a: 339/512, c: 451/512, M1: 3/4, M2: 3/4, M3: 3/4, M4: 3/4, q1: 3/4, q2: 1/2, qb1: 1/4, qb2: 1/2, phi1: 1/2}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
45954 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }\phi_{1}q_{1}^{2}$ + ${ }\phi_{1}^{4}$ + ${ }M_{2}\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$ 0.624 0.8115 0.769 [X:[], M:[0.75, 0.75], q:[0.75, 0.5], qb:[0.25, 0.5], phi:[0.5]] 4*t^2.25 + 4*t^3. + 2*t^3.75 + 13*t^4.5 + 14*t^5.25 + 9*t^6. - t^4.5/y - t^4.5*y detail {a: 639/1024, c: 831/1024, M1: 3/4, M2: 3/4, q1: 3/4, q2: 1/2, qb1: 1/4, qb2: 1/2, phi1: 1/2}