Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
46174 | SU2adj1nf2 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ | 0.5204 | 0.6454 | 0.8063 | [M:[1.0, 1.1429], q:[0.5714, 1.0], qb:[0.2857, 0.4286], phi:[0.4286]] | [M:[[0], [0]], q:[[0], [0]], qb:[[0], [0]], phi:[[0]]] | 0 | {a: 51/98, c: 253/392, M1: 1, M2: 8/7, q1: 4/7, q2: 1, qb1: 2/7, qb2: 3/7, phi1: 3/7} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ | ${}M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$ | 3 | t^2.143 + t^2.571 + 2*t^3. + 2*t^3.429 + 2*t^3.857 + 2*t^4.286 + 2*t^4.714 + 2*t^5.143 + 2*t^5.571 + 3*t^6. + 3*t^6.429 + 4*t^6.857 + 4*t^7.286 + 4*t^7.714 + 2*t^8.143 + 2*t^8.571 - t^4.286/y + t^7.714/y + (2*t^8.143)/y + (4*t^8.571)/y - t^4.286*y + t^7.714*y + 2*t^8.143*y + 4*t^8.571*y | t^2.143 + t^2.571 + 2*t^3. + 2*t^3.429 + 2*t^3.857 + 2*t^4.286 + 2*t^4.714 + 2*t^5.143 + 2*t^5.571 + 3*t^6. + 3*t^6.429 + 4*t^6.857 + 4*t^7.286 + 4*t^7.714 + 2*t^8.143 + 2*t^8.571 - t^4.286/y + t^7.714/y + (2*t^8.143)/y + (4*t^8.571)/y - t^4.286*y + t^7.714*y + 2*t^8.143*y + 4*t^8.571*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
46042 | SU2adj1nf2 | ${}\phi_{1}q_{1}q_{2}$ + ${ }M_{1}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{1}^{2}$ + ${ }q_{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ | 0.588 | 0.713 | 0.8247 | [M:[1.0, 0.8478], q:[0.837, 0.7935], qb:[0.3152, 0.5761], phi:[0.3696]] | t^2.217 + t^2.543 + t^2.674 + t^3. + t^3.326 + t^3.783 + t^4.109 + t^4.239 + t^4.435 + t^4.565 + t^4.761 + 2*t^4.891 + t^5.087 + t^5.217 + t^5.348 + t^5.543 + t^5.87 - t^4.109/y - t^4.109*y | detail | {a: 1731/2944, c: 2099/2944, M1: 1, M2: 39/46, q1: 77/92, q2: 73/92, qb1: 29/92, qb2: 53/92, phi1: 17/46} |